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Abstract

A bouncing ball on a vibrating plate is a canonical example of a dynamic system,
exhibiting nonlinear phenomena, such as chaos and it is easy to study experimen-
tally. We present two strategies to create different juggling patterns for a blind
juggling robot that juggles four balls at the same time. An algorithm to realize
four desired periodic orbits is introduced starting with four balls in the P1

1 -orbit,
where the paddle’s trajectory is used as control input. The key idea is to use two
different paddle modes and to switch it at an appropriate time. The first mode has
the goal to ’break the symmetry’ of the four balls, i.e. we separate their trajectories
from each other. This is done by a paddle trajectory that produces chaotic motion
of the balls. Then, suitable ball’s states have to be induced such that the paddle’s
trajectory can be switched to the second mode and the desired combination of four
periodic orbits results. As a basic requirement for this approach we need to know
what suitable ball’s states are. Therefore, the basin of attraction for each periodic
orbit is determined by numerical simulation. Using the basin of attraction, each
ball’s state at a potential switching point can be classified whether it leads to the
desired periodic orbit or not.
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Notation

The following notations and abbreviations are standard and used throughout the
text. Other non-standard notations are defined when first introduced.

Sets

a ∈ A a is an element of the set A
[a, b] the closed interval {x ∈ R|a ≤ x ≤ b}
(a, b) the open interval {x ∈ R|a < x < b}
{a, b} the set comprising the elements {a} and {b}
A ∪B union of set A and B

Algebra

R set of real numbers
R+ set of non-negative real numbers
Z set of integer numbers
N set of natural numbers
An set of n-tuples of elements belonging to the set A (e.g. Rn)
x scalar
x vector in R2

xi ith element of x

Analysis

|x| absolute value of x
‖x‖ Euclidian norm of a vector
‖x‖∞ infinity norm of a vector
a := b a is defined by b

Acronyms and Abbreviations

BJR Blind Juggling Robot
NNA Nearest Neighbour Algorithm
WAA Weighted Average Algorithm
CA Connectivity Algorithm
RA Robust Algorithm
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Chapter 1

Introduction

1.1 Motivation

Today’s science is interdisciplinary. One highly interdisciplinary field is nonlin-
ear dynamics, which has wide applications in engineering, mathematics, biology
and physics - to only list a limited number. These fields are united by the fact
that models to describe some phenomena are derived, which is often done using
nonlinear equations. The handling of such models motivated scientists as Euler,
Lagrange, Hamilton and Maxwell to analyze the nonlinear dynamics of such sys-
tems. According to [1], Heri Poincaré (1892) was the first that discovered one of
the main characteristics that arise in nonlinear systems - the sensitive dependence
on initial conditions - which is a major characteristic of a chaotic system. Illus-
trating the mentioned interdisciplinarity, it was a meteorologist called E.N. Lorenz
(1963), that discovered a second characteristic of chaotic systems - the fact that so-
lutions never settle down to equilibrium or to a periodic state (aperiodic long-term
behaviour). This was done by computer simulation, which already indicates that
nonlinear systems can be rather hard to handle analytically.

The motion of a bouncing ball is perhaps one of the simplest physical system which
shows the characteristics of a chaotic system mentioned above. Futhermore, it is
easy to experimentally study the dynamics of a bouncing ball system. The bouncing
ball system is a hybrid dynamical system, where flows are described by differential
equations and impacts by difference equations. Again, the bouncing ball sytem is
a canonical example of a hybrid system.
Due to the fact of being a comprehensible example representing the phenomena
mentioned above, the bouncing ball system has been extensively studied by dy-
namical systems theorists. However, the bouncing ball system appears in many
different applied fields, as the control and noise generation of machinery such as
jackhammers, the transportation and separation of granular solids such as rice, or
hopping robots.

According to [2], the stabilization of a ball juggling system to rhythmic patterns
- as an extension of the bouncing ball system - has received great attention from
the engineering and neuroscience community because of its relevance in robotics
and nature. The problem that is adressed in this thesis (see Section 1.4) is highly
interesting because it unites everything mentioned before.

1



2 1.2. Literature Survey

1.2 Literature Survey

Because of its completeness in exhibiting the nonlinear phenomena mentioned in
Section 1.1 and due to its practical relevance, juggling systems have been widely
studied. According to [3], Bühler, Koditschek and Kindlmann [4] were amongst the
first analyzing a juggling robot. Using a feedback algorithm called ’mirror algo-
rithm’, they were able to bring a ball to a desired periodic orbit.
In [3], Reist presented a new strategy of stabilizing the ball by an appropriate pad-
dle curvature without using any knowledge about the ball’s state at any time. He
showed that the closed loop performance is only marginally better than what is
achieved with open loop control. His blind juggling robot (BJR), presented in [3],
is used as reference with regard to later implement the strategy derived in this the-
sis. Therefore, all physical limitations of the BJR are taken into account within this
thesis.
Recently, Sanfelice, Teel and Sepulchre [2] presented a control stragety for a one
degree-of-freedom juggling robot, that - with only the information of the ball’s state
at impacts - controls the ball to track a reference rhythmic pattern. Their main idea
is to optimize the paddle trajectory after each impact such that a reference trajec-
tory is tracked. Furhtermore, a modeling of the bouncing ball as hybrid dynamical
system, as mentioned in Section 1.1, is given. They close with an extension of their
’hybrid control stragegy’ to juggle multiple balls with different rhythmic patterns.

The two approaches presented in [5] and [6] share the idea to compute the basin
of attraction for a desired periodic orbit. This is done by linearizing the bouncing
ball system about an equilibrium point and then compute numerically a Lyapunov
function for the linearized system. In this way, a basin of attraction for the nonlin-
ear system in some neighbourhood of the reference solution is obtained - in other
words, a local stability estimation is performed. Vincent [6] illustrates a challenging
approach that highly influenced this thesis: He uses a paddle trajectory producing
chaotic motion of the ball to enter the basin of attraction, that is precomputed
and therefore known and then switches the paddle frequency to reach a particular
periodic orbit. Summing up, he reduces the problem of stabilizing a ball juggling
in a certain periodic orbit, to the computation of its basin of attraction together
with the task to find a suitable excitation such that this basin of attraction can be
reached.

In literature, juggling robots or more general bouncing ball systems are mostly
analyzed for sinusoidally vibrating paddles, as in [1],[5],[6],[7] and [8]. With respect
to the BJR, where the paddle is driven by a servo controller that is limited to
quadratic trajectories, we cannot choose a sinusoidal paddle trajectory. Instead,
a piecewise parabolic paddle trajectory, developed in [3], is used. However, this
piecewise trajectory highly complicates the analysis of the bouncing ball system,
since - in contrast to a sinusoidal trajectory - a case distinction has to be introduced.
Therefore, we consider a numerical approach in this thesis. In chapter 4, we focus
only on one parabolic piece of the paddle trajectory, which simplifies the analysis
and would make an analytic stability treatment, similar to [7], possible.
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1.3 Purpose

In this section, the main goal of this thesis is introduced. Using the BJR presented
in [3], several periodic orbits can be reached. However, the initial condition, i.e. the
initial height of the ball, where it is dropped, has to be laboriously generated by
hand. Therefore, it is already hard to reach a periodic orbit and in case a periodic
orbit is reached, it is most likely the ’one periodic’ orbit, where the ball hits at each
paddle period. We use a paddle as presented in Fig. 1.1 to juggle four balls at the
same time. Hence, different periodic orbits can be realized by different balls, which
characterizes a certain juggling pattern of the whole system.

One can easily start this paddle from rest such that all four balls reach the men-
tioned ’one periodic’ orbit. The task of this thesis was to come up with a strategy
to realize different juggling patterns, i.e. different combinations of periodic orbits,
while starting with all four balls in the ’one periodic’ orbit. A possible juggling
pattern can be seen in Fig. 1.1. To realize a desired pattern, firstly we have to
break the symmetries - in other words we have to somehow separate the balls from
each other. In a second step, when the four balls have different trajectories, we
want them to reach the four desired periodic orbits.

Figure 1.1: Cloverleaf paddle with an exemplary juggling pattern

1.4 Thesis Outline

Chapter 2 describes how the system is modeled and what fundamental assumptions
it is based on. After having introduced some basic notation and concepts, as the
Newton’s impact law, the system of differential equations - describing the ball’s
flight between two impacts - and the so-called impact map (difference equation),
which relates two pre-impact states, is derived. Furthermore, the two different
modes of the paddle trajectory are presented leading to the total number of differ-
ent periodic orbits that are feasible by the BJR.

Chapter 3 is concerned with the derivation of an algorithm to fulfill the task given
in Section 1.3. The basins of attraction for the feasible periodic orbits are com-
puted, which are major components of the algorithm. As it is done numerically by
discretizing the state space, one needs a method to classify a point, which does not
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exactly fit one of the computed grid points - as most of the measured data points
will not do. Therefore, four interpolation algorithms are derived and compared re-
lated to performance. Subsequently, a paddle trajectory, similar to [6], is derived
such that the ball states enter a desired basin of attraction. We present multiple
reasons, why the paddle trajectory is chosen such that chaotic motion is produced.
The algorithm, which is - to keep it as simple as possible - firstly derived for one
ball, is then extended to handle multiple balls.

Chapter 4 is dedicated to a second algorithm that fulfills the given task. Another
approach is considered where the main drawbacks of the first strategy should be
improved. Namely, the low robustness and the waiting times. Nevertheless, some
results derived in chapter 3 are absorbed. Furthermore, a local stability analysis is
given.

The final chapter draws some conclusions and possible future work is proposed.



Chapter 2

The Bouncing Ball Model

In this chapter, a model for the bouncing ball system is derived, which has been - as
already mentioned - extensivly studied. However, the underlying assumptions vary
from a ’high bounce approximation’ and elastic impact, as in [1], to a negligible
effect of the ball’s collision to the paddle trajecotry, in [1],[5],[7],[8]. Whereas in [2],
the fewest assumptions are used which leads to a more complex system modelling.
In order to focus on the given task, reasonable assumptions have to be made. We
have to compromise about physical accuracy and mathematical simplicity of the
model. Therefore, we consider a ball in a constant gravitational field and model
the impacts of the ball and paddle as an inelastic collision, i.e. there is energy
dissipation which is described by the coefficient of restitution. Furthermore, the
paddle’s mass is assumed to be much greater than the ball’s mass so that the
ball’s impact contribution to the paddle trajectory is negligible. This assumption
is clearly justified by the real BJR, where the ball’s mass is roughly 3× 10−4 times
smaller than the paddle’s mass, according to [3]. Since only the vertical motion
is considered, the system has one degree-of-freedom. Again, this assumption is
reasonable, as in [3] horizonal stability for the BJR is proved up to a certain apex
height.

2.1 Impact Map and State Relation

The dynamics of a ball bouncing on an actuated racket are hybrid, as mentioned in
Section 1.1. Between two impacts, the ball follows a parabolic trajecotry, plotted
in Fig. 2.2. To describe the ball’s trajectory we choose the ball’s state as

xB(t) :=

(
xB(t)
ẋB(t)

)
(2.1)

and describe the free flight as a system of ordinary differential equations

ẋB(t) =
d

dt

(
xB(t)
ẋB(t)

)
=

(
ẋB(t)
−g

)
(2.2)

with initial conditions

xB(0) =

(
xB(0)
ẋB(0)

)
. (2.3)

The solution of (2.2), which is derived using standard methods,(
xB(t)
ẋB(t)

)
=

(
− 1

2gt
2 + ẋB(0)t+ xB(0)
−gt+ ẋB(0)

)
(2.4)

5



6 2.1. Impact Map and State Relation

describes the ball dynamics between two impacts. Choosing the initial condition
xB(0) = 0 leads to

t =
1

g
(ẋB(0)− ẋB(t)). (2.5)

Inserting (2.5) in (2.2) results in

ẋ2
B(t) = −2gxB(t) + ẋ2

B(0). (2.6)

Figure 2.1: The bouncing ball system

Figure 2.2: Notation for the discretization

The positions where the impacts occur are described by a discrete time system.
Let xB,n be the position of the nth-impact, ẋ−

B,n and ẋ+
B,n the velocitiy of the

ball immediately before(-) and immediately after(+) the nth-impact, according to
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Fig. 2.2 We assume the impact to occur instantaneously, i.e. x−
B,n = x+

B,n and

x−
P,n = x+

P,n, where

xP(t) :=

(
xP (t)
ẋP (t)

)
(2.7)

is the paddle’s state. Since the collisions are assumed to be inelastic, there is an
energy dissipation at each impact described by the coefficient of restitution ez,
where ez ∈ [0, 1]. The limiting value ez = 1 characterizes the elastic collision, i.e.
the ideal case with no energy dissipation, whereas for ez = 0 the ball immediately
lies on the surface with which it collides. Within few steps a mapping between pre-
and post-impact states can be derived. This is done in [1] and is known as Newton’s
impact law

ẋ+
B,n = −ezẋ

−
B,n + (1 + ez)ẋP,n. (2.8)

Now, the discrete time system of the impact states can be derived using (2.6) and
the variables defined according to Fig. 2.2. We define the time between two impacts
as

∆tn := tn+1 − tn. (2.9)

By using the initial condition xB(0) := x+
B,n, we can describe the impact state after

the fee flight as

xB,n+1 = xP,n+1 = xP (∆tn) (2.10)

ẋ−
B,n+1 = −

√(
ẋ+
B,n

)2
− 2g(xB,n+1 − xB,n). (2.11)

To determine the time ∆tn up to the next impact, (2.8) is placed into (2.4) which
leads to

xB,n+1 = −1

2
g(∆tn)

2 +
(
−ezẋ

−
B,n + (1 + ez)ẋP,n

)
∆tn + xB,n. (2.12)

Having derived all the required equations, a formulation for the discrete time sys-
tem of the impact states can be given as

xB,n+1 = xP (∆tn)

ẋ−
B,n+1 = −

√(
(1 + ez)ẋP,n − ezẋ

−
B,n

)2
− 2g(xB,n+1 − xB,n)

where ∆tn results from

−1

2
g(∆tn)

2 +
(
−ezẋ

−
B,n + (1 + ez)ẋP,n

)
∆tn − (xB,n+1 − xB,n) = 0,

(2.13)

which is called the impact map and is equivalent to the formulation in [5]. The two
equations (2.4) and (2.13) fully characterize the nonlinear dynamics of the bounc-
ing ball system. According to [5] the impact map is transcendental and cannot be
solved analytically. However, we can approximate it numerically and use it for the
simulations that are performed in Chapter 3. It could be solved analytically by
assuming that the impacts always occur at the same paddle position (’high bounce
approximation’, according to [1]). After [5], stable cycles manifest themselves in
fixed points of (2.13).
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2.2 Paddle Trajectory

The paddle movement is assumed as a periodic trajectory that is known. Without
any doubt a non periodic paddle trajectory has several advantages, that are pointed
out in [2]. However, to keep it as simple as possible, we choose the paddle trajectory
as periodic. There are two different types of trajectories: The stabilizing trajectory
where the stability analysis is based on and the so-called chaos trajecotry which is
used to excite the ball and generate an appropriate ball state. The parameters of
each trajectory were selected under several criterions, as described in Section 2.2.3.

2.2.1 Stabilizing Paddle Trajectory

As shown in [5], stability of the apex height can be achieved by choosing the paddle
acceleration ap at the impact smaller than zero and in a certain range. The BJR
consists of a linear motor which actuates the paddle. Therefore, according to [3],
the paddle’s trajectory has to be chosen piecewise quadratic. Since the parameters
of the paddle trajectory have already been optimized in [3], it could simply be
reproduced. As shown in Fig. 2.3, the paddle curve consists of five parabolic parts.
For the stability analysis in Chapter 4 only the second part of the curve, where the
nominal impact point is located, will be considered.

0 0.1 0.2 0.3 0.4
−0.04

−0.02

0

0.02

time [s]

Paddle Position [m]

 

 

nominal impact

0 0.1 0.2 0.3 0.4
−1

0

1

time [s]

Paddle Velocity [m/s]

 

 

nominal impact

Figure 2.3: Stabilizing paddle trajectory

2.2.2 Chaos Paddle Trajectory

As explained in Chapter 1, before switching back to the stabilizing paddle curve,
an extensive set of initial conditions for the ball has to be induced. This is realized
by a paddle trajectory that produces chaotic behavior of the balls. Why the paddle
curve in Fig. 2.4 produces chaos and what we exactly denote with chaos is explained
in Section 3.3 in more detail. Nevertheless, the formal implementation of the paddle
excitation is given here. The chaos paddle curve

xp(t) =

{
−1

2act
2 + v0t, if t ∈ [kTc, (k + 1

2 )Tc], k ∈ Z
1
2act

2 − v0t, if t ∈ [(k + 1
2 )Tc, (k + 1)Tc, ], k ∈ Z (2.14)

is assembled from two parabolic pieces with relatively high frequency. It is fully
characterized through the selection of the maximum stroke A and the paddle’s
acceleration ac. To compute the maximum stroke, the maximum of (2.14) is derived:

ẋP (t) = −act+ v0
!
= 0 ⇒ tm :=

v0
ac

(2.15)
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xp(tm)︸ ︷︷ ︸
A

=
1

2

v20
ac

⇒ v0 =
√
2Aac (2.16)

The period of the chaos trajectory Tc can be derived by comparing the velocities of
both parts.

v0 = ac
1

2
Tc − v0 ⇒ Tc =

√
32A

ac
(2.17)

0 0.05 0.1 0.15 0.2 0.25
−0.05

0

0.05

time [s]

Paddle Position [m]

0 0.05 0.1 0.15 0.2 0.25
−2

0

2

time [s]

Paddle Velocity [m/s]

Figure 2.4: Chaos paddle trajectory

2.2.3 Parameters

Before we continue with the analysis, an overview about the used parameters is
given in Tab. 2.1. The experimental value for the coefficient of restitution was
derived in [9]. However, it could be changed varying the balls by using different
materials. The determination of the characteristic parameters ac and Tc for the
chaos paddle trajectory is described in Section 3.3. Finally, the stabilizing paddle
acceleration refers to the piece in Fig. 2.3, that contains the nominal impact point.
The according value was derived in [3].

Table 2.1: Reference values for the bouncing ball system

Parameter Symbol Experimental Value

Gravitational acceleration g 9.81 m
s2

Coefficient of restitution ez 0.8
Chaos paddle acceleration ac ±2g
Chaos maximum stroke A 0.03 m
Chaos paddle period Tc 0.2212 s
Chaos maximum velocity v0 1.0850 m

s2

Stabilizing paddle acceleration ap −1
2g
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2.3 Feasibility of Periodic Orbits

As mentioned in Section 1.3 the goal of this thesis is to achieve different stable
juggling patterns, whereas all different pattern permutations should be possible to
reach. Therefore, it is essential to know which stable patterns are feasible at all,
before an algorithm to actually attain the desired patterns can be derived. Similar
to [7] we introduce

Definition 1. An orbit of the impact map (2.13) is called an l-periodic orbit of
order k, a Pk

l -orbit, if it holds that(
tn+l

ẋ−
B,n+l

)
=

(
tn

ẋ−
B,n

)
+

(
kξ
0

)
, l, k ∈ N, ∀n ∈ Z, t0 = 0, (2.18)

where ξ is the paddle period and the notation explained in Fig. 2.2 is used.

Time (s)

H
ei

g
h
t
x

B
(t

)
(m

)

0.5 1 1.5

P1

1

AP
2

1

P1

2

P3

1

0

0.2

0.4

0.6

0.8

Figure 2.5: Examples of periodic orbits

To identify the feasible Pk
l -orbits using the BJR, i.e. using the given paddle traje-

cotry in Section 2.2.1, a numerical approach is considered. A ball with a randomly
chosen height in the range of 0 and 2 meters, which represents all physically feasible
inital conditions of the ball denoted xB(0), is dropped and simulated forward. After
a large number of impacts, the ball has either reached a certain periodic orbit or it
is classified as unstable. We have to indicate that the assumption is made that a
ball cannot jump off the paddle anymore. Once it lies on the paddle, i.e. as soon
as a ball rests on the paddle’s surface, it is classified as unstable.
Because the BJR is physically limited to a juggling height of 2 meters, a relation
between apex heights of Pk

1 -orbits is useful. The P1
1 -orbit has the same period as

the paddle. Let h1 be the apex height for the P1
1 -orbit, then the apex height hk for

a Pk
1 -orbit is, according to (2.18),

hk =
1

2
g

2

ξk︸︷︷︸
(kξ)2

= k2h1, (2.19)

where ξk is the period of the Pk
1 -orbit. The stabilizing paddle trajectory in Sec-

tion 2.2.1 is characterized by the apex height h1 of the P1
1 -orbit. Having the relation

(2.19) and an upper bound for the juggling height of 2 meters, a range for h1 can
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be determined where the feasible orbits are analyzed. We assume that at least the
achievement of the P3

1 -orbit should be possible. Therefore, it is necessary that

h1 ≤ 2

k2
=

2

9
= 0.2222. (2.20)

Executing the simulation specified above leads to Fig. 2.6, where the x-axis is pro-
portional to the paddle frequency that is needed to reach the descripted height h1.
The five branches of Fig. 2.6 represent the different periodic orbits that can be
reached, by the chosen paddle frequencies. The two lowest branches belong to the
P1
2 -orbit which has two different apex heights within one paddle period, as can be

seen in Fig. 2.7(d). The remaining three branches describe the P1
1 -,P2

1 - and P3
1 -

orbit.

Figure 2.6: Feasible period orbits for varying frequency

We choose a frequency with an apex height h1 = 0.1 meter and accordingly a max-
imum height h3 = 0.9 meter.
Having four different periodic orbits that are feasible by the BJR, there is another
possible distinction of juggling pattern within one orbit. For the P2

1 - and P3
1 -orbit

there are phase shifts possible, as shown in Fig. 2.7(b). For the P2
1 -orbit we denote

them by AP2
1 and BP2

1 . For the P3
1 -orbit it will be shown in Section 3.3.2 why we

neglect the phase shifting for that specific periodic orbit.

Figure 2.7 shows all feasible periodic orbits by the BJR, whereas in the follow-
ing chapter an algorithm will be derived to reach any choice out of these orbits for
any number of balls between one and four.
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Figure 2.7: Feasible periodic orbits of the BJR



Chapter 3

First Algorithm - Map for
Basin of Attraction

In this chapter, an algorithm is derived which achieves the given task in Section 1.3.
Its main concept is a ’stability map’ which is precomputed and can be used to esti-
mate initial condidtions created by the chaos paddle movement leading to a specific
periodic orbit. Several interpolation algorithms will be presented to estimate sta-
bility of an initial condition in the discrete ’stability map’. Last but not least,
simulation results are presented and discussed.

First of all, the strategy is explained for one ball, i.e. there is one ball that has
to achieve a desired periodic orbit. In Section 3.4, the control strategy is extended
to the case of juggling multiple balls with different rhythmic patterns. Briefly ex-
plained, the control algorithm is looking for a time ts where the paddle trajectory
can be switched from the chaos to the stable mode, resulting in the desired periodic
orbit as it is graphically explained in Fig. 3.1.

3.1 Basin of Attraction

At first, some definitions are needed which are similar to [10]:

Definition 2. x∗ is an attracting fixed point, if all trajectories that start near x∗

approach it as t → ∞. That is x(t) → x∗ as t → ∞.

Definition 3. Given an attracting fixed point x∗, its basin of attraction is defined
to be the set of initial conditions x0 such that x(t) → x∗ as t → ∞.

The main idea of the control algorithm is to separate the problem into two parts,
as shown in Fig. 3.1. There is a first part, where the ball is excited such that it
enters a desired basin of attraction. In other words, the first part has the goal to
generate adequate initial conditions for the ball. If we consider multiple balls, we
additionally need to break the symmetry of the balls, i.e. we need to separate them.
This part will be extensively treated in Section 3.3.
In the second part, the paddle movement follows the stabilizing trajecotry of Sec-
tion 2.2.1. Using this paddle trajectory, the stability analysis is performed. In this
part, we actually reach the desired periodic orbits. Our genearal idea is that we
want to know the set of all physically feasible initial conditions of the ball that lead
to a specific periodic orbit. Having this set we can easily decide for which ball states
at a potential switching time ts we can switch the paddle’s trajectory to the second
mode such that the desired periodic orbit results. In other words, what needs to be

13
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(a) without ball

 

 

chaos part
transition part
stable part
ball
mapping

(b) with ball

Figure 3.1: The blue trajectory correspondes to the chaos trajectory. To switch to
the stabilizing paddle trajectory (cyan) we need a small transition part (pink).

known, are the basins of attraction for each periodic orbit.

At first, the set of all physically possible initial ball conditions for the BJR has
to be determined. Using the limitation of the apex height of hmin = −A, hmax = 2
meters and (2.4), the maximum ball height is determined by standard methods:

d

dt
xB(t) = −gt+ ẋB(0)

!
= 0 ⇒ t =

ẋB(0)

g
(3.1)

d2

dt2
xB(t) = −g < 0 ⇒ Maximum (3.2)

Using (2.4) and (3.1) an inequality is derived as

xB,max =
1

2

ẋ2
B(0)

g
+ xB(0)

!
< hmax. (3.3)

Now a relation between the inital conditions xB(0) and ẋB(0) using (3.3) becomes

|ẋB(0)| <
√
2g(hmax − xB(0)), (3.4)
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which is a region with a parabolic curve as boundary that describes the set of all
physically feasible initial conditions

R = {xB(0) ∈ R2 : |ẋB(0)| <
√
2g(hmax − xB(0)), hmin ≤ xB(0) ≤ hmax}, (3.5)

which is shown in Fig. 3.2.

0 0.5 1 1.5 2

−6

−4

−2

0

2

4

6

xB

ẋ
B

Figure 3.2: Set R of all physically feasible initial conditions at switching time ts

The basin of attraction is numerically computed by applying a fine grid to the
set R and simulating each grid point. A grid point, i.e. an initial condition, which
leads to a certain periodic orbit, is indicated by a red grid point, whereas a grid
point, i.e. an initial condition, which does not converge to a desired periodic orbit
is marked by a green grid point. The computation is caried out in the following
way: A certain initial condition is taken and then the ball’s trajectory under the
stabilizing paddle trajectory is computed. This is done for 100 impacts. If two im-
pacts occur within a tolerance ε, i.e. ti+1 − ti < ε, where ti denotes the time when
the ith impact occurs, the simulation is stopped and the considered pair of initial
conditions marked with a green point. As mentioned the assumption is made that
a ball cannot jump off the paddle anymore, once it is at rest. If no ball is at rest
after 100 impacts and if the desired periodic obit is reached, the initial condition is
marked with a red point. The detection of which periodic orbit is reached is easy,
since each periodic orbit is fully characterized by its period, apex height and phase,
as can be seen in Fig. 2.7. Finally, the set of all red points is equal to the (discrete)
basin of attraction for a certain periodic orbit, which is plotted in Fig. 3.3.
Although this is rather computationally intensive, it should also be noted that once
the basin of attraction is known, it allows a control strategy that is computationally
cheap and can be executed in realtime what is exactly needed for an implementation
with the BJR.

Taking a closer look at the basins of attraction in Fig. 3.3, it can be noticed that
for the AP2

1 -, BP2
1 -, and P1

1 -orbit, there is in each case one large connected region.
It should be clear by considering the location of each region and can easily be ver-
ified by simulation that these large connected regions contain the nominal initial
condition. The nominal initial condition is characterized by the fact that the first
impact velocity and impact position exactly match the steady state values of the
particular periodic orbit. The nominal initial condition is marked with a black star
in Fig. 3.3.
In Fig. 3.3(a), there are three connected regions with roughly the same size, due
to the fact that for the P3

1 -orbit, three phase shifts are possible. One could think
of distinguishing between a AP3

1 -, BP3
1 - and CP3

1 -orbit. It will be explained in Sec-
tion 3.3.2 why we avoid this distinction and unite the AP3

1 -, BP3
1 - and CP3

1 -orbit to
the P3

1 -orbit.
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The basin of attraction for the P1
2 orbit, which is illustrated in Fig. 3.3(e) contains

no major connected region. This already suggests, what will be explained in more
detail in Section 3.2.5, that it is the most challenging juggling pattern to reach and
that it is highly sensitive.
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Figure 3.3: Basin of attraction

3.2 Interpolation

Since the basin of attraction was computed by simulating different initial conditions
represented by grid points, a measured initial condition, that has to be classified by
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the computed basin of attraction will never exactly match one of the grid points.
Therefore, to classify a measured initial condition we use an interpolation algo-
rithm. To the best of our knowledge, there are no previous results in the literature
that solve this specific interpolation problem. However, we introduce four different
interpolation algorithm and discuss them relating to performance. The following
four interpolation algorithms are presented:

� Nearest Neighbour Algorithm (NNA)

� Weighted Average Algorithm (WAA)

� Connectivity Algorithm (CA)

� Robust Algorithm (RA)

Being able to describe the derived algorithms some definitions from graph theory
are needed. They are analog to [11]:

Definition 4. A graph is a pair G = (V,E) of sets such that

E ⊆
(

V
2

)
:= {{x, y}|x, y ∈ V, x 6= y}.

The elements of V are the vertices (or nodes) of the graph G, the elements of E are
its edges.

Definition 5. For a vertex v ∈ V of a graph G, let Γ(v) := {u ∈ V |{u, v} ∈ E} be
its neighbourhood

Definition 6. Let
⊎k

i=1 Vi be a partition of V, such that two vertices u and v are
connected by a path iff they lie in the same partition. The subgraphs G[Vi] are called
connected components of G.

3.2.1 Nearest Neighbour Algorithm

As a basic idea, the basin of attraction is understood as a mesh graph Mm,n, where
the vertices are the simulated grid points. Let u be a given inital condition that
needs to be classified. Therefore, u is mapped to the set of feasible initial conditions
R and the relevant section of Mm,n i.e. the neighbourhood is going to be considered
for the classification, as it is shown in Fig. 3.4(a).

.

.

.

.

.

.

· · · vi+1,j vi+1,j+1 · · ·

u

· · · vi,j vi,j+1 · · ·

.

.

.

.

.

.

(a) Mesh graph M2,2

vi+1,j vi+1,j+1

u

vi,j vi,j+1

(b) Star graph S4

Figure 3.4: Grid points v with measured data point u
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A justification for the handling of the problem as a graph could be sketched as
follows: There exists a bijective mapping

ϕ : VMm,n → R,

vi,j 7→ {xB,j , ẋB,i}
(3.6)

by construction of the discrete set R that maps each vertex vi,j of Mm,n to a grid
point in R. Let k, l ∈ R+, but /∈ N and let {xB,l, ẋB,k} be the measured initial
conditions. If we now choose i < k < i+ 1 and j < l < j + 1 the closest four inital
condition pairs are uniquely determined. Hence, by applying the bijection ϕ−1 the
four vertices are unique as well:

(
{xB,j , ẋB,i+1} {xB,j+1, ẋB,i+1}
{xB,j , ẋB,i} {xB,j+1, ẋB,i}

)
ϕ−1

−→
(

vi+1,j vi+1,j+1

vi,j vi,j+1

)
(3.7)

This analysis allows to consider the description of the problem as a graph, as showed
in Fig. 3.4, where each vertex can be uniquely mapped to a pair of initial conditions
of R.

To describe the NNA, the star graph S4 as depicted in Fig. 3.4(b) is considered. If

we look at the set of initial conditions {xB,j , ẋB,i} as a vector

(
xB,j

ẋB,i

)
each edge

e ∈ E of S4 can be assigned with a weight W (e) ∈ R, that is defined as

W (e) := { 1

‖ϕ(u)− ϕ(v)‖
|{u, v} = e ∈ E}, (3.8)

where the denominator is unequal zero, because k, l /∈ N.

Now, a formulation of the NNA can be given as

S (u) := S (argmin
v∈Γ(u)

W ({u, v})), (3.9)

where

S (v) =

{
1, if ϕ(v) is part of the basin of attraction
0, otherwise

(3.10)

is the indicator function.

Although the theoretical derivation of the NNA looks rather complex, it is a trivial
exercise to implement it using MATLAB. The theoretical description is needed on
the one hand to be formally correct and on the other hand, it will be used later to
describe more sophisticated interpolation algorithms.

3.2.2 Weighted Average Algorithm

The WAA is roughly speaking an extension of the NNA. It will improve some of
the drawbacks that the NNA has. One major drawback, that will be improved, is
that the NNA is a greedy algorithm, because it only looks for the locally closest
neighbour. Hence, all the available information about the ’stability’ of the other
neighbours is not considered, which should intuitively lead to a limited performance.
As an example which highlights this problem one could imagine a measured point
lying just outside a stable region has to be classified. Because its nearest neighbour
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is the boundary point of a stable section it is classified as ’stable’. However, it will be
’unstable’. This problem might be avoided by considering the whole neighbourhood
of the measured point. If we define ΓS(u) := {v ∈ V |{u, v} ∈ E ∧S (v) = 1} as the
stable neighbourhood of u, the weighted average of a measured point u

A (u) :=

∑
v∈ΓS(u)

W ({u, v})∑
v∈Γ(u)

W ({u, v})
(3.11)

can be defined, where W is the weight from (3.8).
Summing up, a measured point u can be classified by the WAA in the following two
steps:

1. compute the weighted average A (u)

2. S (u) :=

{
1, if A (u) > α
0, otherwise

The parameter α ∈ [0, 1] indicates how demanding the classification is to the neigh-
bourhood to of a point u to classify it as ’stable’. For example if α is set to 1 the
whole neighbourhood, i.e. all four points, have to be ’stable’ such that u is classi-
fied as ’stable’, whereas for α = 0 u with any neighbourhood is classified as ’stable’,
which is of course useless. Figure 3.5 shows some arbitrarily chosen examples for
the WAA, where the light red area represents the domain where all measured points
will be classified as being part of the basin of attraction. Based on experience, we
choose the design parameter α between 0.8 and 0.9 to get reasonably reliable results.

(a) α = 0.8 (b) α = 0.65

(c) α = 0.35 (d) α = 0.5

Figure 3.5: Examples for WAA

3.2.3 Connectivity Algorithm

This algorithm is based on the assumption that in the basins of attraction in Fig. 3.3,
stable regions are often connected. Therefore, the main idea of the CA is to put
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more emphasis on connectivity. To explain how the classification is made by the
CA, it is convenient to look at two examples. In Fig. 3.6 the light red area repre-
sents the domain where all measured points will be classified as being part of the
basin of attraction.

(a) Two connected components
G[Vi] and G[Vj ]

(b) One connected component
G[Vi]

Figure 3.6: Examples for CA

The mathematical description of the CA is based on the two former algorithms, that
are presented in Section 3.2.1 and 3.2.2. However, to keep it as simple as possible, a
slight different notation in the mesh graph M2,2 is used, as can be seen in Fig. 3.7.
Now, an explicit formulation of the CA is given, i.e. a method of how to classify a

.

.

.
.
.
.

· · · ṽ1 ṽ2 · · ·

u

· · · ṽ3 ṽ4 · · ·

.

.

.
.
.
.

Figure 3.7: Mesh graph M2,2 with notation for CA

measured vertex u:

(i) if ṽi ∈ G[Vk], for i = 1, 2, 3, 4 and fixed k
⇒ S (u) = 1

(ii) if {ṽi, ṽj} ∈ EM2,2 ∧ {ṽi, ṽj} ∈ G[Vk], for i, j ∈ {1, 2, 3, 4}, i 6= j and fixed k

⇒ S (u) =

{
1, if min |ϕ(u)− ϕ(ṽi)| < d
0, otherwise

(iii) if ṽi ∈ G[Vk], for i ∈ {1, 2, 3, 4} and variable k

⇒ S (u) =

{
1, if max |ϕ(u)− ϕ(ṽi)| < d
0, otherwise
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Basically the CA distinguishes three cases considering the mesh graph in Fig. 3.7:
In case (i), all four neighbours ṽ of a measured point u belong to the basin of
attraction. In case (ii), two adjacent grid points are parts of the basin of attraction,
similar to the upper connected component in Fig. 3.6(a). Therefore, a bar with
thickness d around the two adjacent points has to be considered. Finally in case
(iii), only one vertex of the four neighbours is part of the basin of attraction. As
shown in Fig. 3.6, d is the range around a single ’stable’ point that is classified as
belonging to the basin of attraction and is a constant design parameter.

3.2.4 Robust Algorithm

The main goal of the RA is to be robust, i.e. even for small variations of the
measured inital condition to the real initial condition, if the paddle trajectory is
switched from chaos into the stabilizing mode it should result the desired periodic
orbit. Furthermore, the errors due to the unknown edges of the basins of attraction
should be reduced. This is done by considering an extended neighbourhood of a
measured point u. As the algorithm is not very complicated, it can be explained in
words:

A given measured point u is classified as being part of a particular basin of at-
traction if and only if all vertices that belong to its extended neighbourhood, as
defined in Fig. 3.8, are grid points of this basin of attraction.

As the initial conditions classified by this algorithm will clearly be more robust,
the drawback of this method is that many possible switching points are missed
because only a partial neighbourhood was in the basin of attraction. Especially if
multiple balls have to reach a challenging juggling pattern this leads to rather long
switching times ts. Furthermore, as can be seen in Fig. 3.3(e), for the P1

2 orbit
there might not exist such a big neighbourhood in the domain of attraction, so we
might lose one periodic orbit using the RA.
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Figure 3.8: Mesh graph M4,4
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3.2.5 Performance Evaluation

In order to compare the performance of the derived algorithms, a numerical ex-
periment is conducted. 100 different initial conditions are randomly chosen. Each
algorithm is set the task to reach one specific periodic orbit for each of the 100
initial conditions. As can be seen in Tab. 3.1, the column ’reliability’ indicates how
many of the 100 initial conditions resulted in the desired periodic orbit, by each
particular interpolation algorithm, divided by 100. Whereas t̄s denotes the average
switching time in seconds.

Table 3.1: Performance evaluation

NNA WAA CA RA

reliability t̄s reliability t̄s reliability t̄s reliability t̄s

P3
1 0.58 18.1 0.83 30.2 0.8 22.3 0.98 43.3

AP2
1 0.88 1.7 0.99 2.0 0.99 2.0 1 2.4

BP2
1 0.82 1.8 0.95 2.2 0.97 2.4 1 2.7

P1
1 0.81 1.0 0.91 1.1 0.89 1.0 0.98 1.7

P1
2 0.45 2.7 0.79 13.3 0.76 15.4 / /

It can be seen that a set of inital conditions that is classified by the NNA often
leads to the wrong periodic orbit. Although the NNA requires the shortest switch-
ing times, its reliability is such low that it has to be stated as an useless interpolation
algorithm for the desired purpose.

The WAA and the CA have similar performace. Both average switching time and
reliabilty only differ few from each other. Therefore, it cannot clearly be estimated
which interpolation algorihm should be preferred. However, it is intriguing that
for almost each periodic orbit one of those two interpolation algorithm has slightly
better reliability. Hence, one could try to combine the two algorithms such that for
each periodic orbit the specific better algorithm will be used.

The RA satisfies most. Even if the waiting times for the switching from the chaos
paddle movement to the stabilizing trajectory are somewhat higher, compared to
the ohter algorithms, its reliability is clearly the best. Therefore, the RA is - in
spite of the fact to require larger waiting times - the prefered algorithm. Unfor-
tunately, the basin of attraction of the P1

2 orbit cannot be interpolated using the
RA, because - as supposed in Section 3.2.4 - there is no connected region in the
basin of attraction, which is big enough. Hence, the interpolation for the P1

2 orbit
is executed with the WAA, because of a small advantage in reliability and switching
time in contrast to the CA, as shown in Fig. 3.9(e).

Concluding, we can state that a tradeoff between switching time and reliability
is required, where the reliability, however, is of higher interest. In Chapter 4,
a completely new approach is presented, with the main goal to reach a higher
robustness, i.e. reliability.
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Figure 3.9: Overview performance

3.3 Introducing Chaos

As the second part of the split-up problem, the stabilizing paddle trajecotry is ana-
lyzed. This section gives an insight into the frist part - the chaos excitation. It was
already mentioned that the main goal of the chaos trajectory is to reach a desired
domain in the basin of attraction. Another requirement of the chaos excitation is
to ’break symmetries’, i.e. if a stable juggling pattern is reached, with two or more
balls in the same periodic orbit, the balls follow the same trajectory and have only
very little differences in the states. If we now want to realize another juggling pat-
tern, we want to switch the paddle trajectory into the chaos mode and execute the
described algortihm to perform the desired new pattern. Therefore, a paddle trajec-
tory is needed such that the balls get separated form each other. Otherwise the balls
would follow almost identical trajectories and it would not be possible to realize dif-
ferent periodic orbits for different balls. As the balls always have uncertainties due
to parameter noise, a system behavior that exhibits sensitive dependence on initial
conditions would be perfectly suited to separate the balls. These two requirements
lead to the idea of choosing a paddle trajectory that produces chaotic motion of the
balls and that we call chaos paddle trajectory.

As a reminder to the reader and because there are different definitions of what
chaos is, we define analog to [10]:

Definition 7. Chaos is aperiodic long-term behaviour in a deterministic system,
that exhibits sensitive dependence on initial conditions.

’Aperiodic long-term behaviour’ means that there are trajectories which do not
settle down to fixed points or periodic orbits as t → ∞. To be able to describe
exactly the basic ideas, that are used in this section another term is needed, which
is taken from [10]:

Definition 8. An attractor is defined as a closed set A with the following properties:

1. A is an invariant set: any trajectory x(t) that starts in A stays in A for all
time
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2. A attracts an open set of initial conditions: there is an open set U containing
A such that if x(0) ∈ U , then the distance from x(t) to A tends to zero as
t → ∞. This means that A attracts all trajectories that start sufficiently close
to it.

3. A is minimal: there is no proper subset of A that satisfies conditions 1 and 2.

Definition 9. A strange attractor is defined to be an attractor that exhibits sensitive
dependence on initial conditions.

Now, we justify why the paddle trajectory from Section 2.2.2 produces chaotic
behaviour of the bouncing ball system. In Fig. 3.10 two different trajectories are
shown that differ in position by 0.00001 meters at the zeroth impact. After just six
impacts the two trajecotries show no resemblance anymore. This is a descriptive
justification for the sensitive dependence on initial conditions of the given system.
The aperiodic long-term behaviour of the system can be seen in Fig. 3.12, where
the states at potential switching points are plotted for 100,000 impacts. Finally,
the system is deterministic since it has no random or noisy inputs or parameters.
According to Def. 7, the system with the chosen paddle trajectory is chaotic.
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Figure 3.10: Sensitive dependence on initial conditions

3.3.1 Upper Bound for Height

As the BJR is limited to a maximum juggling height of hmax= 2 meters, the chaos
paddle trajectory from Section 2.2.2 has to be chosen such that this limit will never
be exceeded. In this section, an upper bound for the maximum juggling height is
derived, which allows to choose an appropriate maximum stroke A for the chaos
paddle trajectory.

Proposition 1. For reasonable initial conditions and a paddle trajectory as given
in Section 2.2.2 the following upper bound for the ball height holds:
xB(t) ≤ 1

g (
1+ez
1−ez

)2acA, ∀t ∈ R+

Proof. Let ẋ+
B,n :=


ẋ+
B [0]

ẋ+
B [1]

...
ẋ+
B [n]

 ∈ Rn, ẋ−
B,n :=


ẋ−
B [0]

ẋ−
B [1]

...
ẋ−
B [n]

 ∈ Rn and ẋP,n :=
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
ẋP [0]
ẋP [1]
...
ẋP [n]

 ∈ Rn, where n ∈ N0 indicates the impact number. According to [12],

we use that in a normed vector space V, the triangle inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x,y ∈ V (3.12)

holds, where here the infinity norm ‖x‖∞ := max
i

|xi| is used. Hence, using (2.8)

and (3.12) leads to

‖ẋ+
B,n‖∞ = ‖−ezẋ

−
B,n+(1+ez)ẋP,n‖∞ ≤ ez‖ẋ−

B,n‖∞+(1+ez) ‖ẋP,n‖∞︸ ︷︷ ︸
≤
√
2acA

. (3.13)

The relation ‖ẋP‖∞ ≤
√
2acA used in the last step can easily be verified considering

(2.14). The assumption is made that the paddle’s displacement is always small
compared to the ball’s maximum height. Therefore the update condition

ẋ+
B [n] = ẋ−

B [n+ 1], n ∈ N0 (3.14)

results. Using (3.13) and (3.14), the following scalar inequality can be derived:

ẋ+
B [n] ≤ ‖ẋ+

B,n‖∞ ≤ ez‖ẋ+
B,n−1‖∞ + (1 + ez)

√
2acA. (3.15)

We define

m[i] := ‖ẋ+
B,i‖∞, i ∈ N0 and (3.16)

α := (1 + ez)
√

2acA. (3.17)

With (3.15) an iteration can be proceeded:

m[1] ≤ ezm[0] + α
m[2] ≤ ezm[1] + α ≤ e2zm[0] + αez + α
m[3] ≤ ezm[2] + α ≤ e3zm[0] + αe2z + αez + α
...

m[n] ≤ α(
n−1∑
i=0

eiz) + enzm[0].

(3.18)

Using the fact that the (non ideal) coefficient of restitution satisfies 0 < ez < 1, the
geometric series (3.18) converges if the limit of n to infinity is taken, i.e.

m[n] ≤ 1− enz
1− ez

α+ enzm[0] (3.19)

lim
n→∞

m[n] ≤ 1

1− ez
α =

1 + ez
1− ez

√
2aA (3.20)

This leads to the upper bound for the post impact velocity

ẋ+
B,n ≤ 1 + ez

1− ez

√
2aA , ∀n ∈ N0. (3.21)

Now, applying the equation for an uniform acceleration we get xB(t) ≤ ‖ẋ+
B,n‖

2
∞

2g ,

∀t ∈ R+ and therefore xB(t) ≤ 1
g (

1+ez
1−ez

)2acA, ∀t ∈ R+.
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In particular, the upper bound for the maximum height does not depend on the
initial conditions of the ball. It will be shown in the next section by simulation,
that the upper bound is rather conservative. However, it is convenient to have the
bound for an indication of how the maximum height changes when parameters are
varied, i.e. one can see that the upper bound changes linearly with the maximum
stroke A of the chaos paddle trajectory.

3.3.2 Strange Attractor - Parameter Evaluation

In this section, the design parameters for the chaos trajectory (2.14) - namely pad-
dle acceleration ac and maximum stroke A - are derived. The main idea is that the
strange attractor of the system under the chaos trajectory should overlap as much
as possible with the basin of attraction of the system excited with the stabilizing
paddle trajectory. Therefore, the strange attractor of the system excited with the
chaos trajectory is numerically determined and optimized for the described param-
eters. This is done by starting with a randomly chosen set of initial conditions and
simulating the system for 10,000 impacts, where at each potential switching point,
the ball’s state is plotted.

At first, the paddle acceleration is derived. Therefore, the maximum stroke is fixed
to a certain value and ac is varied, where due to the physical limitation of the BJR,
the paddle acceleration cannot be chosen greater than 2g. As shown in Fig. 3.11,
between ac = g and ac = 1.25g the chaotic behaviour of the systems starts. The
strange attractor gets bigger as the paddle acceleration is increased. Therefore, it
seems reasonable to choose the highest, physically possible acceleration, i.e. ac = 2g.

Having fixed the paddle acceleration to ac = 2g, a well-founded value for the max-
imum stroke A is derived. It can easily be shown by simulation that A has to be
chosen within the range [0, 0.03], because of the limited maximum height of the
ball. However, if the upper bound derived in Section 3.3.1 is used, the range [0,
0.0124] is obtained, which is - as already mentioned - too conservative and will not
be used here. Roughly spoken, a value for the parameter A is sought such that
the strange attractor of the system under the chaos trajectory overlaps as much as
possible with the basin of attraction of the system excited by the stabilizing pad-
dle trajectory. To determine numerically whether a point of the strange attractor
matches with the basin of attraction in Fig. 3.3, the particular point is classified
using an appropriate interpolation algorithm from Section 3.2. In Tab. 3.2, each
point of the strange attractor for each periodic orbit was classified by the WAA.
The value in the table is the number of points belonging to the strange attractor
that overlap with the particular basin of attraction, divided by the number of all
points in the strange attractor. In Tab. 3.3 the interpolation is performed with the
CA.

It can be noticed looking at either of the tables that by increasing the paramter
A, the overlapping of the strange attractor with the basin of attraction of the P1

1 -
and P1

2 -orbit decreases, whereas the remaining three periodic orbits get a higher
overlapping. As the P1

1 -orbit is trivial to reach and as the P1
2 -orbit will be highly

challenging, up to nearly impossible, to reach, we prefer a high value for the pa-
rameter A. Therefore, A is chosen to be 0.03. In Fig. 3.12, the strange attractor
for the chaos paddle trajecotry with the parameters determined in this section is
plotted using 100,000 samples.

A visualization of the overlapping is given in Fig. 3.13, where the strange attractor
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(a) ac = 0.75g (b) ac = g (c) ac = 1.25g

(d) ac = 0.75g (e) ac = g (f) ac = 1.25g

(g) ac = 1.5g (h) ac = 1.75g (i) ac = 2g

(j) ac = 1.5g (k) ac = 1.75g (l) ac = 2g

Figure 3.11: Strange attractors and their histograms

for the chosen parameters is plotted over the basins of attraction for each periodic
orbit. Now, we can justify why we do not consider phase shifts in the P3

1 -orbit. Two
out of the three connected domains in the basin of attraction for the P3

1 -orbit are
hardly reachable with the chosen strange attractor, what can be seen in Fig. 3.13(a).
Therefore, it makes no sense to distinguish between this three connected regions
which belong to the three different phase shifts that are possible.

3.4 Algorithm and Extension to Multiple Balls

In this section, we bring the two parts of the initially split-up problem together.
Furthermore, we extend the algorithm to handle multiple balls, i.e. up to four balls.
We start with four balls that are in any periodic orbit, while the paddle trajecotry
is as in Section 2.2.1. Most likely all four balls will initially be in the P1

1 -orbit,
however, it does not have to. After a certain time, the paddle trajectory is switched
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Table 3.2: Overlapping between strange attractor of chaos trajecotry and basin of
attraction of stabilizing paddle trajectory - interpolated with WAA

A P3
1 AP2

1 BP2
1 P1

1 P1
2

0.03 0.0085 0.0996 0.1040 0.3039 0.0046
0.025 0.0050 0.0807 0.0997 0.3866 0.0065
0.02 0.0045 0.0881 0.0957 0.3950 0.0066

Table 3.3: Overlapping between strange attractor of chaos trajecotry and basin of
attraction of stabilizing paddle trajectory - interpolated with CA

A P3
1 AP2

1 BP2
1 P1

1 P1
2

0.03 0.0087 0.1003 0.1047 0.3076 0.0058
0.025 0.0050 0.0811 0.1002 0.3902 0.0078
0.02 0.0046 0.0887 0.0963 0.3994 0.0082
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ẋ
B

Figure 3.12: Strange attractor for chosen parameters ac = 2g and A = 0.03

into the mode explained in Section 2.2.2. Now, we are looking for a switching time
to go back to the stabilizing paddle trajectory such that all desired periodic orbits
are reached.

The main part of the algorithm is to find an adequate switching point. The pote-
tial switching points have to be limited to the bottom points of the chaos paddle
trajectory, because the basin of attraction was computed for the clearly defined
transition part that results if the bottom of the chaos paddle trajectory is chosen
as switching point, as it can be seen in Fig. 3.1. The idea is straightforward: While
the system is excited with the chaos paddle trajectory, we check at every bottom
point of the chaos trajectory whether the paddle trajectory can be switched back
to the first mode or not. This is done by testing if the ball’s states are part of the
desired basins of attraction using an interpolation algorithm. Figure 3.14 shows
an example for two balls. An approach to reduce the computation steps will be
presented in the next section.
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ẋ
B

(a) P3
1 -orbit

−0.5 0 0.5 1 1.5 2 2.5

−6

−4

−2

0

2

4

6

AP
2

1

xB

ẋ
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Figure 3.13: Overlapping between strange attractor and basin of attraction

3.4.1 Permutations

For the cloverleaf paddle of the BJR, it would be desirable to reach four different pe-
riodic orbits. Because there are 5 feasible periodic orbits, as shown in Section 2.3,

we have

(
5
4

)
= 5 different combinations of four different orbits. However, as

some periodic orbits have rather small basins of attraction, we can already sup-
pose that it will be hard to reach certain combinations of the orbits in reasonable
time. With reasonable time we denote switching times below 5 minutes. Again,
a tradeoff between reliability and computation time of the interpolation algorithm
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Figure 3.14: Two balls starting in the P1
1 -orbit. After 3 seconds the paddle tra-

jectory is switched and we look for adequate inital conditions of the balls. After
24 seconds the paddle trajecotry is switched back to the stabilizing mode and the
desired P1

1 - and AP2
1 -orbit result.

used is required. On the one hand, one could think about applying an interpolation
algorithm with low computation time and low reliability. Using that algorithm a
trial and error strategy could be pursued, i.e. if the desired periodic orbits do not
result after one trial, the paddle trajectory is switched back to the chaos mode and
the procedure is repeated until the desired result is achieved. In addition, some
learning strategy could be derived to improve the results. On the other hand, an
interpolation algorithm could be chosen that does not follow the other, with the
goal to reach the desired periodic orbits at the first trial.
To minimize the switching time, we make the assumption that permutations of the
balls are not considered. This means that it does not matter which out of the four
balls reaches which periodic orbit. However, the total of all four periodic orbits has
to match the desired ones. Due to this assumption, one can reduce the number of
inital conditions that have to be classified by an interpolation algorithm from 24
to 10, where 4! = 24 is the number of all permutation σ : {1, 2, 3, 4} → {1, 2, 3, 4},
that a set - containing 4 elements - has. In a sequential consideration of the four
balls without permutations, starting with the first ball one has to check its initial
conditions at most for four periodic orbits. Going on with the second ball, there
are only three orbits remaining that have to be checked in the worst case and so on,
which gives ten possibilities. It has to be mentioned that as soon as one ball cannot
reach any of the desired periodic orbits, that are checked, we move on to the next
switching time.



Chapter 3. First Algorithm - Map for Basin of Attraction 31

3.4.2 Approach without using a Basin of Attraction

One could think of an approach similiar to the one presented in this chapter, how-
ever, without using a basin of attraction. The main idea is that we know the last
impact states of all balls. For the next potential switching point a simulation is
executed, to see which periodic orbits would be achieved, if the paddle trajectory
was switched to the stabilizing mode. If all desired orbits are reached, the BJR is
assigned to switch the paddle trajectory at this specific time. Otherwise, one goes
on to the next potential switching point and so on. Without loss of generality, it
can be assumed that knowing the last impact state for all balls, no impact of no
ball occurs before the potential switching point is achieved, otherwise one would
just simple update the last impact state by such an impact. We call this ’shifting
window idea’. This approach has the big advantage to not use a basin of attraction
and therefore avoid the problems that occur with the interpolation algorithms. The
drawback, however, is that potential switching points get lost, because if an impact
of a ball occurs just before a potential switching point, the time is not sufficient to
execute the simulation described.

While for one ball this approach leads to satisfactory results, for four balls it shows
very poor performance because of the drawback explained. Since an algorithm
should be derived that can handle four balls, this approach is useless for the given
problem setting.

3.5 Evaluation/Discussion

In this section, we discuss the performance of the algorithms presented in this chap-
ter. Several aspects have already been mentioned before, nevertheless they will be
repeated to give a well-arranged review of the derived algorithms.

The main advantage of the algorithms presented is, that using an adequate interpo-
lation method each combination out of the five feasible periodic orbits is realized in
reasonable time. The main drawback is its low reliability. It is only rarely possible
to reach the P1

2 -orbit, due to its fractional basin of attraction, which is plotted in
Fig. 3.3(e). The remaining four periodic orbits can be reached with clearly higher
reliability. Since the switching times are rather small, one could compensate the
low reliability using a trial and error approach, as explained in Section 3.4.1. An-
other problem is that until now we assumed a noiseless environment and perfect
state knowledge which is not realistic for the BJR. Therefore, robustness is another
important requirement of the algorithm. One could think of using an interpolation
algorithm similar to the RA, with even a larger neighbourhood to increase the ro-
bustness, but the drawback of such an approach was already mentioned, when the
RA was discussed.
Furthermore, the limitation to the potential switching points of the chaos paddle
trajectory, which are each bottom points, is restricting. Of course, further potential
switching points, e.g. each top point, could be added by computing new basins of
attraction for each new potential switching point. However, even with more poten-
tial switching points, there will always be a limited number of possible switching
points, which causes high switching times. It would be desirable being able to switch
the paddle trajectory at any point using only one look-up table to determine the
stability for each periodic orbit.

In Chapter 4, a new approach is presented, with the main goal to get higher ro-
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bustness and continuous potential switching points.



Chapter 4

Second Algorithm -
Non-Local Stability Analysis

In this chapter, a second approach is presented. The goal is to get rid of the two
main drawbacks of the first approach in Chapter 3, namely the low reliability and
the limitation to a finite set of potential switching points. The idea is to focus on the
stabilizing paddle trajectory for the stability analysis. Unlike in Chapter 3, we only
consider the second parabolic piece of the stabilizing paddle trajectory in Fig. 2.3,
i.e. the piece where the nominal impact point is located. If we know the region
on this trajectory part where the ball with a specific velocity can strike leading to
a certain periodic orbit, the transition part between chaos and stabilizing paddle
trajectory can be arbitrarily chosen. In other words, a basin of attraction can be
computed that is only depending on the stabilizing paddle trajectory and not on
some transitional part, as in Chapter 3.

4.1 Local Stability

We want to analyze the stability properties of the fixed points determined by (2.13).
Taking advantage of Lyapunov’s stability principle, according to [13], the system
(2.13) - linearized about an equilibrium point - can be analyzed. We derive a linear
mapping that describes how perturbations, added to the initial conditions of the
nominal trajectory, map over a single bounce. This approach is motivated by [3]
and carried out in the next section, while a nomenclature according to Fig. 4.1 is
used.

Figure 4.1: Nomenclature for perturbation analysis

33
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4.1.1 Perturbation Analysis

We define the nominal ball and paddle states as

x̄B,0 :=

(
x̄B,0
¯̇xB,0

)
=

(
0
¯̇xB,0

)
(4.1)

and

x̄P,0 :=

(
x̄P,0
¯̇xP,0

)
=

(
0
¯̇xP,0

)
. (4.2)

For the ball state a perturbation is introduced leading to a so-called perturbated
state

xB,0 = x̄B,0 + σ0, with σ0 =

(
σ01

σ02

)
. (4.3)

Now, the dynamics between two impacts can be linearized, where we use at (F),
that the impacts of ball and paddle state are assumed to occur instantaneously:

xB(τ) = 0 + σ01 + τ ¯̇xB,0

xP (τ) = 0 + τ ¯̇xP,0

}
(F)⇒ xB(τ)

!
= xP (τ) (4.4)

Therefore, τ can be computed as

τ =
σ01

¯̇xP,0 − ¯̇xB,0
. (4.5)

To consider how the perturbations map over two impacts, the notation of Fig. 4.1
can be used. The pre-impact state of the ball and paddle at impact n are

x−
B,n =

(
σ01 + τ ¯̇xB,0

σ02 + ¯̇xB,0 − τg

)
. (4.6)

and

xP,n =

(
τ ¯̇xP,0
¯̇xP,0 + apτ

)
. (4.7)

Using Newton’s impact law (2.8), the post-impact state can be computed:

x+
B,n =

(
σ01 + τ ¯̇xB,0

−ez(σ02 + ¯̇xB,0 − τg) + (1 + ez)(¯̇xP,0 + apτ)

)
. (4.8)

To describe the free flight phase, we use (2.4), where 2T is denoted as one paddle
period and we take into account the compensation for τ :

x−
B,n+1 =

(
−1

2g(2T )
2 + ẋ+

B,n2T + x+
B,n − τ ¯̇xB,0

−g2T + ẋ+
B,n + gτ

)
=

(
−2gT 2 + 2T (−ez(σ02 + ¯̇xB,0 − τg) + (1 + ez)(¯̇xP,0 + apτ)) + σ01 + τ ¯̇xB,0 − τ ¯̇xB,0

−gT + (−ez(σ02 + ¯̇xB,0 − τg) + (1 + ez)(¯̇xP,0 + apτ)) + gτ

)
=

(
σ01 + 2T ((1 + ez)apτ − ez(σ02 − τg))
−ez(σ02 − τg) + (1 + ez)apτ + gτ

)
.

(4.9)

In the last step the relations

¯̇xP,0 = −¯̇xB,0
1− ez
1 + ez

(4.10)
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and

¯̇xB,0 = −gT (4.11)

were used. Now, the system can be linearized in terms of perturbations. Therefore,
with (4.5) and (4.9) we compute the Jacobian

M :=
∂x−

B,n+1

∂σ0
=

 ∂x−
B,n+1

∂σ01

∂x−
B,n+1

∂σ02

∂ẋ−
B,n+1

∂σ01

∂ẋ−
B,n+1

∂σ02


=

(
1 + 2T

(1+ez)ap+ezg
¯̇xP,0−¯̇xB,0

−2Tez
ezg+(1+ez)ap+g

¯̇xP,0−¯̇xB,0
−ez

) (4.12)

From [3] it is known, that the Jacobian M describes the linear mapping of pertur-
bations over the free fall, i.e.

σ1 = Mσ0. (4.13)

Using x−
B,n = x̄B,0 + σ0 and x−

B,n+1 = x̄B,0 + σ1, finally the linearization of the
discrete time system, describing the impacts, is obtained as

x−
B,n+1 = Mx−

B,n. (4.14)

For the linear discrete time system (4.14), the conditions for stable equilibrium
points are that all eigenvalues of M must lie strictly inside the unit circle, i.e. the
absolute value of both eigenvalues has to be smaller than one.

Using (4.10) and (4.11) one gets

¯̇xP,0 − ¯̇xB,0 =
2gT

1 + ez
(4.15)

and the characteristic polynomial of M can be derived as

pM (λ) =(1 + 2T
(1 + ez)ap + ezg

¯̇xP,0 − ¯̇xB,0
− λ)(−ez − λ) + 2Tez

ezg + (1 + ez)ap + g
¯̇xP,0 − ¯̇xB,0

=λ2 + λ

(
ez − 1− 2T

(1 + ez)ap + ezg
¯̇xP,0 − ¯̇xB,0

)
+

2Tezg
¯̇xP,0 − ¯̇xB,0

− ez

(4.15)
= λ2 + λ

(
ez − 1− 1 + ez

g
((1 + ez)ap + ezg)

)
+ (1 + ez)ez − ez

=λ2g + λ
(
(ez − 1)g − ap(1 + ez)

2 − (1 + ez)ezg
)
+ e2zg

(4.16)

To determine the eigenvalues of M , consider pM (λ)
!
= 0. Therefore, the following

two eigenvalues are obtained:

λ1,2 =
1

2g

(
g + ap(1 + ez)

2 + ge2z ±
√
(g + ap(1 + ez)2 + ge2z)

2 − 4e2zg
2

)
(4.17)

It can be seen that the local stability, i.e. the eigenvalues λ1,2, only depends on the
paddle acceleration at impact ap, the coefficient of restitution ez and the gravita-
tional constant g. Figure 4.2 shows the maximum absolute eigenvalue for varying
paddle accelerations. It can be seen that for the paddle acceleration chosen in Chap-
ter 3, namely ap = − g

2 , local stability is guaranteed.
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Figure 4.2: Plot of max |λ1,2| for different paddle accelerations at impact ap

In [5], they now look for an optimal paddle acceleration in the local stable range
- here ap ∈ [−10,−0.5] - which leads to the largest basin of attraction. However,
this will not be done here, since the paddle acceleration ap = − g

2 has been chosen,
according to [3], to minimize the H2 norm over a range of ball properties of the
BJR.

4.2 Non-Local Stability

In this section, the basin of attraction starting at the first impact on the stabilizing
paddle trajectory is derived. We want to know, where the first impact can occur
- with a certain velocity - such that a particular periodic orbit is reached. The
derivation is restricted to the P1

1 -orbit. Again, the notation explained in Fig. 4.1 is
used. However, some slight changes will be introduced. From (2.13), the mappping

G : R2 → R2(
ẋ−
B,n

tn

)
7→
(

ẋ−
B,n+1

tn+1

)
(4.18)

is known. We define

τn := tn − t̄n (4.19)

as the perturbation in time and

wn :=
1

g
(ẋ−

B,n − ¯̇x−
B,n︸︷︷︸

−gT

) (4.20)

as a normed velocity perturbation, in order to have the same units and scaling of
both states. This scaling will later be useful to define a numerical criterion for
convergence. It has to be mentioned, that ¯̇x−

B,n is determined by the particular pe-

riodic orbit, e.g. for the P1
1 orbit, ¯̇x−

B,n is equal to −gT . Other periodic orbits could
be analyzed by adjusting this value. Using the two normed states, the following
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mapping is obtained:

G̃ : R2 → R2(
wn

τn

)
7→
(

wn+1

τn+1

)
.

(4.21)

Because only one parabolic piece of the paddle trajectory from Section 2.2.1 is
considered, there is a physical bound for τ :

τ ∈ [τmin, τmax]. (4.22)

In this chapter we denote with initial condition the ball state at the first impact. To
compute the basin of attraction we want to know, which initial conditions converge

to the nominal point x̄ =

(
τ̄
w̄

)
=

(
0
0

)
. We denote an initial condition as

converged to the nominal state after i iteration steps, if

|τi|+ |wi| < ε and |τj |+ |wj | ≥ ε, ∀j < i, i, j ∈ N0. (4.23)

Since we want to achieve high robustness, the initial conditions should converge in
a reasonable number of iteration steps.

To compute the basin of attraction, an initial condition is chosen and using the
mapping (4.21), the states are iterated. Therefore, the system (2.13) has to be
solved, which is done by a numerical solve routine. During all iteration steps, the
bound (4.22) has to hold, otherwise the initial condition is classified as unstable.
Figure 4.3 shows the basin of attraction with different maximum iteration steps al-
lowed to converge. Of course, the explicit number of iteration steps is depending on
the factor ε, which is used to define numerical convergence, i.e. for a bigger value of
ε less iteration steps may be needed to converge. Since the same value for ε is used
for all simulations, Fig. 4.3 shows how the basin of attraction grows considering
more iteration steps. It can also be seen that the basin of attraction is limited, i.e.
in spite of the allowed iteration number is increased from 50 to 100 steps, the basin
of attraction does not change anymore. It should be reminded that the analysis in
this chapter simply focuses on the P1

1 -orbit.

The ideas presented in this chapter, specificly for the P1
1 -orbit, can be easily ex-

tended to the other periodic orbits. Knowing the basins of attraction for all periodic
orbits, the same interpolation algorithms could be used. However, at least for the
P1
1 -orbit, the basin of attraction is one connected domain, so the interpolation

should be much more reliable than in Chapter 3. The aspect of robustness, i.e.
assuming that the ball states are not exactly measured, can be taken into consider-
ation by reducing the basin of attraction as shown in Fig. 4.3(e) such that even if
the real states vary slightly from the measured ones, they still lie inside the basin
of attraction.

As mentioned, one main advantage of this new approach is that the basin of attrac-
tion is only depending on the stabilizing paddle trajectory. Therefore, the switching
point on the chaos paddle trajecotry and an appropriate transition part can be arbi-
trarily chosen. This dramatically increases the number of potential switching points
and at first sight it should lead to a much faster performance compared with the
approach in Chapter 3. The main drawback is that with this approach the strange
attractor, describing the initial conditions realized with the chaos paddle trajectory
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Figure 4.3: Basin of attraction

depends on the transitional part. For each arbitrarily chosen switching point a
new transition trajectory is introduced and there is no guarantee, that the strange
attractor really overlaps with the particular basin of attraction. Another problem,
having an infinite number of potential swiching points, is the realtime implementa-
tion. Since time is needed to measure states and verify them using the precomputed
basin of attraction, the potential switching points have to be limited to such points
that are realizable in realtime. However, using a sophisticated method to implement
this algorithm the problem should be highly reduced. Last but not least, since the
basin of attraction for the P3

1 -, AP2
1 -, BP2

1 - and P1
2 -orbit have not been computed,

the performance of the two approaches from Chapter 3 and 4 can only be compared
for the P1

1 -orbit. However, for this single orbit, the approach from Chapter 4 is
preferred.



Chapter 5

Conclusion and Future Work

The main contribution of this thesis is the following: A strategy has been developed
and numerically verified that can realize an arbitrarily chosen combination out of
the five feasible periodic orbits, for up to four balls juggling at the same time. One
main part to derive the algortihm was the determination of the basin of attraction
for each periodic orbit, which was performed numerically by gridding the set of all
physically feasible initial conditions. As this is done with a finite resolution, several
interpolation methods have been derived to classify initial conditions. We discov-
ered that especially the P1

2 -orbit is highly sensitive, since its basin of attraction is
fragmented, i.e. it contains no large connected domain. Furthermore, it turned out
that an interpolation algorithm should be favored, which focuses on large connected
domains in the basin of attraction, since the reliability is increased doing so. Unfor-
tunatelly, for the P1

2 -orbit, no such large domain exists which leads to the decision
to either approve a lower reliability or eliminate it as a feasible periodic orbit.

In a further investigation, a paddle trajectory was designed to excitate the balls,
such that they enter the basin of attraction of the desired periodic orbits. There-
fore, aperiodic long term behaviour of the system is highly desired to reach different
regions at the state space. Additionally, a sensitivity on initial conditions is needed
to ’break the symmetries’, as explained in (3.3). This two requirements lead to the
decision of choosing the paddle’s motion in such a fashion that chaotic motion is
obtained.

Further research might focus on the approach initiated in Chapter 4, which possibly
will lead to a better robustness since the basins of attraction only in the neighbou-
hood of the nominal initial condition are considered. Furthermore, it would be
challenging to analytically compute the basin of attraction, which should be pos-
sible for the mentioned approach, since only one quadratic polynomial part of the
paddle trajectory is considered. This could be done similar to [7], by finding a
Lyapunov function that proves stability, even if finding an appropriate Lyapunov
function is a highly demanding task.

A topic which probably is worth thinking about in more depth, would be to add
noise to the simulation. Therefore, the ball’s state and the coefficient of restitution
could be corrupted by noise. Last but not least, having a control strategy that is
reliable in the presence of noise, it would be interesting to implement it to the BJR.
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