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Abstract— We present a method that exploits chaos for
the control of systems composed of subsystems with identical
nonlinear dynamics and a shared, common control input. Due
to symmetry, these systems are uncontrollable in a deterministic
sense. However, the systems may be controllable in a stochastic
sense when they are driven by process noise. We present a
control strategy that exploits the sensitivity of chaotic motion
to process noise. The chaotic subsystem trajectories evolve inde-
pendently on the strange attractor, which enlarges the reachable
set of the system. Specifically, we consider the control of a
juggling machine bouncing multiple balls on a single, actuated
paddle. The goal is to control the balls to a combination of
stable periodic orbits. First, a paddle motion is applied that
induces chaotic ball trajectories. Then, when the ball states
reach the basins of attraction of the desired periodic orbits,
the paddle motion is switched to the motion that stabilizes the
orbits. Both simulation and preliminary experimental results
are presented.

I. INTRODUCTION

We consider the control of dynamical systems composed

of N subsystems with identical nonlinear dynamics

ẋi(t) :=
d

dt
xi(t) = f (t, xi(t), U(t)) , i = 1, . . . , N (1)

where xi is the subsystem state, and U is the common
control input. The system state X is the collection of the

subsystem states X(t) = {x1(t), . . . , xN (t)}. These systems

are uncontrollable due to symmetry: If the initial states of

the subsystems are identical, xi(0) = xj(0), for all i, j,

they remain identical, no matter what control is applied:

xi(t) = xj(t), for all i, j, t. Practical examples of such

systems include simultaneous manipulation of multiple parts

on vibrating surfaces [1], [2], or teams of micro robots

controlled by a magnetic field [3].

The key to control is the observation that any physical

realization of the system (1) is more accurately captured by

ẋi(t) = f (t, xi(t), U(t), di(t)) , i = 1, . . . , N (2)

where di is some process noise signal. Given identical initial

conditions of the subsystems, the state trajectories are no

longer identical due to the individual noise signals. Roughly

speaking, if the subsystems are controllable with respect to

the noise signals di(t), then the overall system is stochasti-

cally controllable: The noise is able to drive the system to a

neighborhood of any state X with a probability larger than

zero. For precise definitions of stochastic controllability, we

refer to the work in [4], [5]. In practice, the control problem

may be to achieve efficient transitions of the system state X
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Fig. 1. The Blind Juggler bouncing four balls on the Cloverleaf paddle.
The user interface features two buttons to control the juggling machine.

between the basins of attraction of different equilibria of the

system. The efficiency may be measured, for example, by

the probability of achieving a transition, or by the expected

transition time.

We present a control strategy for a specific realization of

a system described by (2): a juggling machine that bounces

multiple balls on a single, actuated paddle, see Fig. 1. The

paddle is called the Cloverleaf for its shape and features four

concave, parabolic areas that keep the balls from falling off

the paddle without feedback. The machine can continuously

juggle balls at heights of up to 2m with a specific periodic

juggling motion of the paddle. This paddle motion provides

local stability to a vertical, periodic ball trajectory that

impacts once per paddle stroke (the ball trajectory you would

generate juggling a table tennis ball on a paddle). A detailed

stability analysis and more details about the machine may

be found in [6], and videos are available in [7].

Bouncing balls exhibit rich dynamical behavior, which

has been well studied, see, for example, [8], [9]. One

such behavior is that the ball trajectories are chaotic for a

specific higher frequency paddle motion. Furthermore, we

find multiple distinct, locally stable ball trajectories for the

juggling motion of the paddle. These stable trajectories may

be combined into juggling patterns on the Cloverleaf paddle.
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Consider the following control problem: Find a paddle

motion that achieves a transition of the balls to a desired

juggling pattern, given an initial ball configuration. In the

deterministic sense, the balls are uncontrollable: Given iden-

tical initial conditions, the ball states remain identical, no

matter what paddle motion is applied. In the experimental

setup, however, there are disturbances acting on the balls.

For example, small breezes of air or random fluctuations of

the bounciness of the balls. In addition, we may exploit the

sensitivity of chaotic ball trajectories to small disturbances

in order to further enlarge the reachable set of the system.

The control strategy is: Induce chaotic ball motions and

estimate the ball states as they independently evolve along

the strange attractor. When the ball states reach the basin

of attraction of the desired juggling pattern, switch to the

juggling motion of the paddle. The balls transition to the

locally stable juggling pattern and the task is achieved.

Preliminary simulation and experimental results provide an

empirical proof of concept for the proposed strategy, but also

highlight its limitations. For example, relying on a stochastic

process to get the state to the basin of attraction may result

in long transition times. Including feedback in this transition

process may improve the expected transition time and is a

rich control problem. We discuss limitations and possible

future work in Sections III and IV.

The paper is structured as follows: We first discuss related

work in Section I-A, and then introduce the bouncing ball

system, stable periodic orbits, and chaos in Section II. We

present the proposed control strategy and preliminary simu-

lation and experimental results in Section III and conclude

with a discussion in Section IV.

A. Related Work

The control strategy we propose is related to the work

in [10], where a single ball is controlled such that it bounces

at a desired apex height with a similar approach using

chaos. This approach is related to the field of chaos control,

introduced in [11], where the OGY method is presented:

An unstable periodic orbit of the strange attractor of a

system is stabilized using feedback. When the state leaves a

predetermined stabilizable region around the orbit for some

reason, feedback is switched off, and the system evolves

open-loop and chaotically. When the system state re-enters

the stabilizable area, feedback is switched back on.

The presented control strategy has a small set of control

actions: To switch or not to switch. The concept of achieving

tasks by exploiting the natural dynamics of a system with

intermittent, limited control is related to the idea of self-

organization introduced in [12], where different open-loop

stable behaviors of particles that bounce between a fixed

boundary and an actuated plate are studied.

Lastly, there exists a large body of work on the control of

juggling robots. A few examples include the work in [13]–

[15]. In [13], a cascading control design for a robot arm

juggling a ball in the presence of obstacles is discussed.

In [14], minimal feedback from microphones for juggling a

ball in an actuated wedge is studied. More recently, a model

predictive control strategy for a paddle juggling robot was

presented in [15].

II. DYNAMICS OF THE BOUNCING BALL

We focus on the vertical ball dynamics and assume that the

horizontal dynamics of the ball are decoupled and stable. We

showed in [6] that these assumptions hold for first-order ball

dynamics. The dynamics are modeled by a straightforward

hybrid system. Assuming instantaneous impacts, there is only

one discrete state that represents the flight phase. We omit

this single discrete state in the following. The ball state is

x = (z, ż), where z is the ball height and ż is the ball

velocity. During free fall, the ball dynamics are

z̈(t) :=
d2

dt2
z(t) = −g (3)

where we ignore aerodynamic drag and g = 9.81m s−2

is the gravitational acceleration. The state of the actuated

paddle is P = (p, ṗ), with p the paddle height and ṗ the

paddle velocity. The ball is in contact with the paddle if

z = p (the ball radius can be ignored, as it is a constant

offset in z). The guard condition captures impact events and

is (z(t)− p(t) ≤ 0) ∧ (ż(t)− ṗ(t) ≤ 0), where ∧ denotes a

logical and. An impact occurs if the ball and paddle position

coincide and the ball is not moving away from the paddle.

The reset map describes the discrete impact dynamics

z+ = z− (4)

ż+ = −ez ż
− + (1 + ez)ṗ. (5)

where we apply Newton’s impact law. The superscripts −,+
denote pre- and post-impact and ez ∈ [0, 1] is the coefficient

of restitution of the ball, which models energy loss at impact.

In (5), we further assume that the impact does not change the

momentum of the paddle, i.e. ṗ+ = ṗ−, which is reasonable

since the ball mass is much smaller than the paddle mass.

We denote an execution of the hybrid system with

x(t) = φ
(

t, x0, P (t)
)

(6)

where the initial condition is defined as

φ
(

0, x0, P (0)
)

:= x0 =
(

z0, ż0
)

. (7)

The set of admissible initial conditions x0 is

I :=

{

x0

∣

∣

∣

(

z0 ≥ p(0)
)

∧

(

gz0 +
1

2
(ż0)2 ≤ gHmax

)}

. (8)

The ball must start above or on the paddle, and the initial

apex height of the ball cannot be above the maximal juggling

height Hmax = 2.0m, above which the ball falls off the

paddle [6].

A. Periodic Orbits

The periodic juggling motion of the paddle is designed to

stabilize a ball bouncing at an apex height of H1, such that

the ball impacts once per paddle stroke. The corresponding

ball motion is called the P1
1 -orbit, where we adopt the

nomenclature from [9]. The orbit Pk
l denotes a periodic ball

motion where the ball impacts with the paddle l times per
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Fig. 2. Juggling paddle motion PJ (t). In order for a Pk
1

-orbit to be
stable, its nominal impact must occur during the interval where the paddle
decelerates with p̈ = −g/2, i.e. the interval between the two dashed, vertical
lines. The nominal impact times and corresponding paddle velocities of
the existing stable Pk

1
-orbits are marked in the paddle velocity plot. The

required nominal paddle velocity for a P4

1
-orbit to exist is 0.58m s−1,

which the paddle never attains.

k paddle strokes. The period time of the orbit is therefore

kTJ , where the paddle period is TJ = 2
√

2H1/g. We show

the paddle motion for H1 = 0.1m in Fig. 2 and denote this

motion in the following with PJ(t).

B. Existence and Stability of Pk
1 -Orbits

We analyze what locally stable Pk
1 -orbits exist for PJ(t)

shown in Fig. 2. It may be that there exist other locally stable

Pk
l -orbits with l > 1, however, for the purpose of introducing

the proposed control method, we restrict the set of orbits to

the Pk
1 -orbits. The ball impacts once per k paddle strokes

on a Pk
1 -orbit. The apex height, measured from the impact

height, of a Pk
1 -orbit is

Hk = k2H1 (9)

where H1 is the apex height of the P1
1 -orbit. Furthermore,

˙̄pk =
√

2Hkg
1− ez
1 + ez

(10)

is the nominal paddle velocity at impact required for sus-

tained juggling of a Pk
1 -orbit given (5). Therefore, the criteria

for the existence of a Pk
1 -orbit are: 1) the paddle velocity ṗ

is at least ˙̄pk at any time during PJ(t); 2) the apex height Hk

must be less than 2m, because any larger apex height would

cause the ball to bounce off the paddle. In the following,

we use the empirically determined coefficient of restitution

as a function of the relative impact velocity of the ball:

ez(ṗ− ż−) = 0.90− 0.015(ṗ− ż−). We find that for PJ(t),
there exist only P1

1 , P2
1 , and P3

1 orbits. For k > 3, the paddle

never reaches the required nominal velocities ˙̄pk, see Fig. 2.
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Fig. 3. All existing, stable periodic Pk
1

-orbits for the juggling paddle

motion PJ (t) shown in Fig. 2. The nominal height of the P1

1
-orbit is H1 =

0.1m and the nominal impact height of this orbit is at 0m. The phase-shifted
versions of the P3

1
-orbit are omitted for clarity.

We may now analyze the local stability of the Pk
1 -orbits

that exist. In [6], we showed open-loop, local stability of

the P1
1 -orbit when the paddle is decelerating during impact,

see Fig. 2. Furthermore, we showed that this stability is

independent of the apex height of the ball. Therefore, the

local stability of a Pk
1 -orbit directly follows from the local

stability of the P1
1 -orbit, given that the nominal impact of

the Pk
1 -orbit occurs during the decelerating phase of PJ(t).

This is indeed the case for the P1
1 , P2

1 , and P3
1 orbits, and we

marked the corresponding nominal impact times in Fig. 2.

For k > 1, balls skip at least one paddle period between

impacts, and we can further distinguish the orbits by their

phase. For example, there are two distinct ball motions

for the P2
1 -orbit, where the impacts with the paddle are at

alternate strokes. This distinction is denoted with letters: P2a
1

and P2b
1 , see Fig. 3. Analogously, the P3

1 -orbit results in

three distinct motions. Therefore we find a total of 6 distinct

locally stable Pk
1 -orbits for PJ(t).

C. Chaos

We induce chaotic ball motions with the periodic paddle

acceleration profile

p̈(t) =

{

aC , 0 ≤ s < TC/2
−aC , TC/2 ≤ s < TC

(11)

where aC is an acceleration constant and

s = (t+ TC/4) mod TC (12)

is shifted such that the lowest paddle heights occur at ti =
iTC , for any integer i. The initial condition is PC(0) =
PJ(0), and the resulting periodic paddle motion is denoted

with PC(t). The period time TC is obtained from

AC =
1

2
aC

(

TC

4

)2

(13)

where AC is the paddle position amplitude. In Fig. 4, we

show a sampled strange attractor of the system that we
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Fig. 4. Strange attractor of the chaotic ball motions for aC = 14m s−1

and AC = 0.03m. The ball states are sampled at ti, when the paddle is at
the lowest height in PC(t).

obtained by simulation with aC = 14m/s2 and AC =
0.03m. The simulation is without process noise. The specific

choice of parameters is discussed in Section III-C. The

ball states are sampled at ti, when the paddle is at its

lowest height in PC(t). The key property of the chaotic ball

trajectories is the sensitive dependence on initial conditions

and process noise. This property causes the motions of the

balls to quickly diverge and become independent, which is

key to the control strategy we introduce below.

III. CONTROLLING JUGGLING PATTERNS

We call a combination of stable periodic orbits a juggling

pattern. The control problem is how to achieve a given

juggling pattern from any initial configuration of the balls.

A straightforward control strategy that achieves this task is:

Induce chaotic ball motions with the paddle motion PC(t)
and switch to PJ(t) if the balls are predicted to converge to

the desired juggling pattern after switching.

A. Basins of Attraction

We limit the candidate switching times to ti, where the

paddle reaches the lowest height in PC(t). This allows

straightforward, smooth transitions from PC(t) to PJ(t).
In order to predict the orbit that a ball transitions to, we

approximate the basins of attraction of the orbits. The basin

of attraction of an orbit Pk
l is defined as the set of initial

conditions that cause an execution to converge to the orbit

when PJ(t) is applied:

B
(

Pk
l

)

:=

{

x0

∣

∣

∣
lim

t→+∞

φ
(

t, x0, PJ (t)
)

→ Pk
l

}

. (14)

The basins are determined by simulation: We grid the set

of initial conditions I (8) and numerically evaluate the

executions φ
(

t, x0, PJ (t)
)

, checking for convergence to a

periodic orbit. The simulations are without process noise.

The resulting basins of attraction are shown in Fig. 5. Even
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Fig. 5. Sampled basins of attraction. The color predicts the resulting orbit
given the respective ball state at the beginning of PJ (t) shown in Fig. 2.
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Fig. 6. High-resolution detail of a section of the basin of attraction plot
in Fig. 5, showing the fractal-like structure of the basin edges.

though we did not limit the convergence check to Pk
1 -orbits,

we have not found any other orbits.

The structure and shape of the basins are not straight-

forward; in fact, we find fractal-like structure at the edges

of some basins, see the enlarged area shown in Fig. 6.

In order to avoid interpolation issues, we approximate the

basins by unions of convex polygons, which also allows us

to efficiently check if a ball is within a basin. We manu-

ally performed these approximations and chose conservative

approximations with the purpose of avoiding the complex

structure at the edges of the basins.

B. Control Strategy

The control strategy for achieving a juggling pattern where

ball j of N balls converges to orbit P
kj

lj
given initial

condition x0
j is:

1) Apply paddle motion PC(t) and estimate ball states at

candidate switching times ti.
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2) If the condition

φ
(

ti, x
0
j , PC(ti)

)

∈ B
(

P
kj

lj

)

, ∀j ∈ {1, . . . , N} (15)

is fulfilled, switch the paddle motion to PJ(t). When

all balls are within the respective basins of attraction,

switch to PJ(t) that stabilizes the orbits.

In practice, we use a straightforward improvement to the

algorithm: Instead of immediately switching from PC(t) to

PJ(t), we introduce a variable waiting time τ ∈ [0, TC),
where the paddle is at rest, PW (τ − ti) = PJ(0), before the

juggling motion starts. This adds the set of states

φ
(

ti + τ, x0
j , PW (τ − ti)

)

, τ ∈ [0, TC) (16)

to check in (15). If we find a τ for which the switching

condition (15) holds, we start PJ(t) after the paddle is at

rest for τ . In practice, we discretize the interval [0, TC) and

check the ball states at each time step. A simulation result

illustrating the strategy is shown in Fig. 7.

C. Simulation Results

The control strategy is evaluated in simulation for two

balls and a juggling pattern that combines a P2a
1 and a

P2b
1 orbit, where the balls reach an apex height of 0.4m

and impact with the paddle at alternating paddle strokes.

Furthermore, we do not require that the balls reach the

specific orbits, but just the specific combination, i.e. Ball 1

may be in P2a
1 and Ball 2 in P2b

1 , or vice versa. This is

motivated by the fact that on the experimental platform, a

spectator could not tell the absolute phase of the ball motions.

The simulation of the chaotic ball motions includes pro-

cess noise that is introduced at impact

ż+ = −ez ż
− + (1 + ez)ṗ+ d (17)

where d is assumed to be white noise, i.e. independent

between impacts, and is drawn from an empirically deter-

mined distribution. For the following experiments, the initial

condition for the balls is at rest at a height of 0.1m, which is

a realistic initial condition for the experimental system after

juggling up the balls from resting on the paddle. The paddle

motion is set to PC(t), causing chaotic ball motions, and

we switch based on the strategy described earlier. We record

the time until the paddle juggling motion PJ(t) is started.

In 500 experiments, we measured an average switch time of

tavg = 6.8 s and a maximal switch time of 35.9 s. Assuming

that the event of switching is independent between candidate

switching times ti = iTC , we may calculate the expected

switch time

E[ti] =

∞
∑

i=1

iTC(1− q)i−1q =
TC

q
(18)

where q is the probability of switching at ti. Given the

measured mean switch time tavg and TC = 0.26 s, we find

that q ≈ TC/tavg = 3.8%.

The straightforward improvement with variable wait times

τ reduces the average switch time roughly by a factor of

three. The average switch time for a strategy where only

τ = 0 is allowed is t0avg = 18.9 s, and the maximal switch

time we measured was 115 s. Another observation is that

TABLE I

AVERAGE SWITCH TIMES GIVEN ATTRACTOR ACCELERATION

aC (m s−2) 13 14 15 16 17 18 19

tavg (s) 6.9 6.8 6.6 7.2 6.5 7.3 6.6

t0avg (s) 17.7 18.9 20.9 20.1 21.5 27.5 25.7

the variable wait time decreases the dependency of the

average switch time on the choice of attractor parameters. In

Table I, we state the measured average switch times in 500

experiments each, given the acceleration aC of PC(t). The

amplitude was left fixed at AC = 0.03m. Since the average

switch times are similar for the range of accelerations, we

chose aC = 14m s−2 as it results in a manageable thermal

load on the motor in the experimental setup if PC(t) is

applied for a longer time. For a different juggling pattern,

however, the transition times might vary significantly. Fur-

thermore, the set of paddle motions described by a constant

acceleration aC and amplitude AC is limited. There may be

other paddle motions that generate attractors that result in

lower transition times. In future work, we will explore the

concept of shaping an attractor, which may include feedback

control, see for example targeting methods described in the

discussion. A related challenge is the control of systems

where certain regions of the state space must be avoided in

the chaotic transitions (for example to avoid destruction, see

the discussion of chaotic control of an experimental double

pendulum in [10]).

D. Experimental Results

We evaluated the strategy with the experimental setup

shown in Fig. 1. The goal was to achieve the same two-ball

juggling pattern as described in the simulation results. The

ball states at candidate switching times are estimated from

ball impact times, and the paddle velocities and positions

at impact. The impact times are measured with two micro-

phones and the paddle position and velocity are obtained

from the motor encoder data.

Because the available experimental data is limited, we

provide only qualitative results that highlight the limitations

of the proposed control strategy. In experiments, the strategy

succeeds in generating the desired juggling pattern, but

the observed performance is considerably lower than in

simulation. First of all, due to current hardware limitations,

the average switch time is higher because the microphones

do not detect every impact. To ensure that the decision to

switch is based on good data, we only switch when the

ball state estimate is from a consistent series of measured

impact times. Consistency is checked by comparing the last

measured impact time to the impact time predicted by the

previously estimated ball state. This reduces the number of

candidate switching times and explains the longer observed

switch times. Furthermore, the strategy currently fails to

achieve the desired juggling pattern in roughly 50% of trials.

There are two main reasons for this lower performance: 1)

The basins obtained in simulation will differ from the basins

of the real system due to modeling errors; and 2) The ball

state estimates are not perfect. A video of two successful

experiments is available in [7].
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paddle motion PJ (t) is started and the balls transition to the desired juggling pattern.

IV. DISCUSSION

The potential for spending long time periods in chaotic

transitions can be reduced using control. In future work, we

may use feedback to apply a paddle motion that directs the

balls more quickly to the basins of attraction. This is a rich

control problem, especially given the physical limitations

of the paddle motion (if the paddle could be accelerated

arbitrarily fast, the control problem would be trivial once

the ball trajectories are separated). A related approach is

targeting, introduced in [16]: The system state may be

directed towards a target region on the strange attractor

using feedback control. Since the evolution of a chaotic

trajectory is sensitive to small perturbations, arbitrary states

on the attractor may be reached quickly by applying small

control inputs. The challenge is to implement such a strategy

for multiple balls, and in the presence of measurement

noise, since a targeting policy will be sensitive to small

measurement errors.

The experimental results highlight the importance of ex-

tending the approach to incorporate data collected with the

real system. Any model-based approximation of the basins

will differ from the basins of the real system. The challenge

is to adjust the approximations based on measured data

(for example the fact that an experiment failed) or online

estimates of the coefficients of restitution of the balls. The

basins may also be evaluated online: simulate the system

with estimated system parameters and check if more conser-

vative approximations of the basins may be reached. Conser-

vative approximations may be efficiently obtained with tools

such as sum of squares programming [17]. Directly using

conservative approximations leads to long transition times,

and there is a trade off between aggressive and conservative

switching policies: An aggressive policy may attempt a

transition multiple times in the time it takes the system to

reach conservative basins. Lastly, we can address imperfect

state estimates with a probabilistic switching policy: Given

measured process noise statistics, the distributions of the ball

states can be approximated. Switching is then based on the

probability of the states being in the basins.
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