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Abstract— We describe the design of a juggling robot that
is able to vertically bounce a completely unconstrained ball
without any sensing. The robot consists of a linear motor
actuating a machined aluminum paddle. The curvature of
this paddle keeps the ball from falling off while the apex
height of the ball is stabilized by decelerating the paddle
at impact. We analyze the mapping of perturbations of the
nominal trajectory over a single bounce to determine the design
parameters that stabilize the system. The first robot prototype
confirms the results from the stability analysis and exhibits
substantial robustness to perturbations in the horizontal degree
of freedoms. We then measure the performance of the robot and
characterize the noise introduced into the system as white noise.
This allows us to refine the design parameters by minimizing
the H2 norm of an input-output representation of the system.
Finally, we design an H2 optimal controller for the apex height
using impact time measurements as feedback and show that the
closed-loop performance is only marginally better than what is
achieved with open-loop control.

I. INTRODUCTION

We present a robot that can vertically juggle a single, com-
pletely unconstrained ball without any sensing and explain
the process and analysis that led us to the design of the
robot. The robot consists of a linear motor that actuates a
machined aluminum paddle. Therefore, the robot stabilizes
a ball in three dimensions with only one degree of freedom.

The paddle has a slightly concave parabolic shape which
keeps the ball from falling off the robot. In addition, a
decelerating paddle motion at impact stabilizes the apex
height of the ball. We find suitable values for these two
design parameters by analyzing the stability of the system
for a range of apex heights and ball properties.

In order to analyze stability, we perform a perturbation
analysis on the nominal trajectory of the ball over a single
bounce from apex to apex. This analysis produces a linear
mapping of the perturbations over a bounce. By studying the
stability regions of this mapping over a range of apex heights
and ball properties, we find suitable design parameter values
for the first robot prototype. Using these values, the robot is
able to continuously juggle a variety of balls at different
heights. The robot also exhibits substantial robustness to
perturbations in the horizontal degree of freedoms.

We evaluate the performance of the robot prototype using a
video camera and an impact detector. We measure the impact
times and impact locations during extended runs. Using the
measurement results, we can estimate the deviations of the
ball’s post-impact velocities from the values predicted by
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Fig. 1. The Blind Juggler. The origin of the coordinate system lies at
nominal impact height and in the center of the paddle. The rotational degrees
of freedom ωx, ωy are defined by the right-hand rule.

the impact models. We characterize these deviations as a
white noise input into the system. This allows us to refine
the design parameters using the H2 system norm. Roughly
speaking, an interpretation of the H2 norm is the gain of a
system when the input is white noise [1]. After setting up an
input-output model of the system, we are then able to find
the optimal design parameters by minimizing the H2 norm.

Finally, we design an H2 optimal controller for the apex
height using the measured impact time as feedback signal.
The control input to the system is the deviation from
the nominal impact state of the paddle. We compare the
closed-loop to the open-loop H2 norm and find that it only
marginally improves. Therefore, actively controlling the apex
height is not necessary.

The main contributions of this paper are extending the sta-
bility analysis of an underactuated, open-loop bouncing ball
system to three dimensions including spin and confirming
the results using a robot prototype. In order to achieve this,
we present the novel strategy of stabilizing the ball by an
appropriate paddle curvature.

The paper is structured as follows: First, we give an
overview of related work. We then show the derivation of
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the nominal trajectory of the ball in Section II. We perform
the perturbation analysis yielding the linear mapping in Sec-
tion III. Next, we choose the stabilizing design parameters in
Section IV. In Section V, we discuss the experimental results
obtained with the robot prototype and identify the noise
parameters. We refine the design parameters by optimizing
the H2 norm of the system in Section VI, where we also
present a performance comparison of the initial to the refined
design. In Section VII, we derive the H2 optimal controller
for the apex height and compare the closed-loop and open-
loop H2 system norms.

A. Related Work

The bouncing ball system has received attention in dynam-
ics, as it is a simple system that exhibits complex dynamical
behaviors [2], [3]. In robotics, juggling has been studied
as a challenging dexterous task. Bühler, Koditschek and
Kindlmann were amongst the first to study robotic juggling
and introduced a feedback law called the mirror algorithm
[4]–[7]. The algorithm defines the trajectory of the paddle
as a mirrored (about the desired impact height) and scaled
version of the ball’s trajectory. Consequently, this requires
constant tracking of the ball’s position. The authors showed
that the apex height of the ball is stabilized. Interestingly, the
resulting paddle trajectory is accelerating at impact, which
contrasts the result of Schaal and Atkeson who analyzed the
stabilizing property of a decelerating paddle for an open-loop
bouncing ball system [8].

Recently, Ronsse et al. have been studying different jug-
gling systems; in particular a ball-in-wedge system [9]–[12].
The authors introduced the term “blind” juggling robot in
[12], where they present a planar ball-in-wedge juggling
robot that is able to juggle purely feed-forward or with
feedback using measured impact times. It is even able to
generate a juggling pattern similar to the popular shower
pattern (you may watch a video they refer to in [12] or on
the first author’s homepage).

In [11], [12], Ronsse also addressed robustness of the
bouncing ball system to static and dynamic errors in the
ball’s coefficient of restitution (CR). The authors first derived
the transfer function of the errors in the CR to the post-
impact velocity perturbations. Then, they placed the zero
of the transfer function by adjusting the paddle acceleration
to either compensate for static or dynamic errors. This is a
similar strategy to the H2 noise-to-output minimization we
use to find optimal design parameters.

In the literature, juggling robots mostly juggle constrained
balls that have only one [13]–[15] or two [4]–[7], [9]–
[12] translational degrees of freedom. Robots juggling un-
constrained balls in three dimensions also have been im-
plemented. They all feature a robotic arm [16]–[19] that
actively controls all the ball’s degrees of freedom. These
more complex robots rely on continuous tracking of the ball’s
position using cameras. Schaal and Atkeson present in [8]
an open-loop juggling robot that features a paddle which
passively keeps the ball in its center: they used a trampoline-
like racket to stabilize the horizontal degrees of freedom of

Fig. 2. Nominal Trajectory

the ball. However, their focus lies on the analysis of the
vertical stability of the ball.

In legged robotics, the equivalent of a bouncing ball
system is a hopping robot. Ringrose presents in [20] the
design of a self stabilizing monopod featuring a curved foot.
After proving that the hopping height is open-loop stable,
the author determines the foot radius based on a stability
analysis of the robot’s pitch. This passive stabilization of the
hopper’s height and pitch is similar to bouncing a ball on a
parabolic plate without any sensing.

II. NOMINAL TRAJECTORY

Before we can perform a perturbation analysis on the
system, we first have to establish the nominal trajectory,
sketched in Fig. 2. Given some parameters, e.g. the CR of the
ball and the nominal apex height, we want to find unknown
parameters such as the nominal paddle speed at impact.

The ball starts at rest at the nominal apex height (A). It
is then subject to free fall (B) before the impact with the
paddle (C). Finally, the ball is subject to free fall (D) until it
reaches the nominal apex height again (E). We develop the
nominal trajectory in a general way and introduce general
functions F , ∆ and Γ that describe the ball dynamics during
free fall, the impact condition and the state changes over
impact, respectively. In Section III, we define the functions
F , ∆ and Γ and states for the Ball S and paddle P specific
to the Blind Juggler.

A. Initial Ball State at Apex

S̄
(
t = T̄0

)
= S̄0 (1)

B. Free Fall until Impact

The ball falls freely for T̄0 ≤ t ≤ T̄1, where T̄1 is the
nominal impact time. The fall is governed by

˙̄S(t) = F
(
S̄(t)

)
. (2)

F captures the dynamics of the ball subject to free fall. The
impact occurs if the impact condition described by ∆ is
satisfied:

∆
(
S̄1, P̄1

)
= 0, (3)

where S̄1 and P̄1 are the nominal impact state of the ball
and paddle, respectively.
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C. Impact

The impact function Γ maps the pre-impact (−) to the
post-impact (+) ball state, given the paddle state. It con-
tains the impact parameters such as CR and geometrical
parameters. We assume the impact to be instantaneous, i.e.
T̄1 = T̄−2 = T̄+

2 .

S̄−2 = S̄1

P̄−2 = P̄1

S̄+
2 = Γ

(
S̄−2 , P̄

−
2

)
(4)

D. Free Fall until Apex

After the impact, the ball is subject to free fall for T̄2 ≤
t ≤ T̄3. We can reuse (2) with different initial conditions

S̄
(
T̄2

)
= S̄+

2 (5)
S̄3 = S̄

(
T̄3

)
. (6)

E. Boundary Condition and Solution

We require the boundary condition

S̄3 = S̄0. (7)

With the above equations, we established a system of
equations which we can solve for the nominal ball trajectory
and the unknown parameters. For the Blind Juggler, we find

T̄1 =

√
2H
γ

T̄3 = 2T̄1 v̄P = −v̄S
1− ez
1 + ez

, (8)

where H is the nominal apex height, γ is the gravitational
acceleration and ez is the vertical CR. v̄P , v̄S are the paddle’s
and ball’s nominal impact velocities, respectively. These
results are straightforward. However, they are an important
prerequisite for the following perturbation analysis. The
general derivation further allows introducing more complex
models for the impact, problem geometry, or free fall (for
example, aerodynamic drag).

III. PERTURBATION ANALYSIS

In order to analyze the stability of the system, we derive
a linear mapping which describes how perturbations added
to the initial conditions of the nominal trajectory map over
a single bounce. Since the perturbations are small, we can
propagate them over the bounce using first order approxima-
tions to the system equations. The derived mapping allows
us to find the stabilizing design parameters aP , the paddle’s
acceleration at impact, and c, the curvature of the paddle.

We perform the analysis in the coordinate system shown in
Fig. 1. The mapping is derived in two dimensions including
spin. However, we show that the analysis generalizes to three
dimensions. We can omit the y and ωx degrees of freedom
of the ball as we assume x, ωy and y, ωx to be uncorrelated.
We present experimental results in Section V that confirm
this assumption. Therefore, the ball state for the analysis is
S= (x, ẋ, ωy, z, ż).

A. Introduce Perturbations

The perturbations s0 are added to the nominal initial
conditions of the ball.

S0 = S̄0 + s0 ‖s0‖ � 1 (9)

B. Free Fall

The dynamics of the ball during free fall are given by

Ṡ= F (S) = AS S+ g (10)

AS =


0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 g =


0
0
0
0
−γ

 . (11)

Since the perturbations are small, we can approximate
the solution to (10) given (9) to first order using a Taylor
series expansion. We omit the higher order terms. We further
identify the perturbations s1 at nominal impact time T̄1 as

S1 = S
(
T̄1, S̄0

)
+
∂S
(
T̄1, S0

)
∂S0

∣∣∣∣∣
S̄0

s0 (12)

��̄S1 + s1 = �����S
(
T̄1, S̄0

)
+M01s0. (13)

The Jacobian M01 describes the linear mapping of s0 to
s1 over the free fall.

C. Impact

Due to the introduced perturbations, the impact does not
occur at the nominal impact time T̄1, but at T2 = T̄1 +
τ . Before we can apply the impact function, we have to
approximate the ball and paddle state at T2.

1) Impact States: We derive the motion of the ball for the
impact time deviation τ = t − T̄1. We can reuse (10) with
the initial conditions (12), the ball state at nominal impact
time T̄1 to get S(τ, S1).

We introduce the paddle state P = (x, ẋ, ωy, z, ż). The
paddle motion in τ is the solution to

P (τ = 0) = P̄1

Ṗ (τ) = G (P (τ)) . (14)

The paddle dynamics are given by

G (P) = Ṗ= AP P+ a

AP = AS

a =
[
0 0 0 0 aP

]T
.

(15)

We approximate the motion of the ball and paddle to first
order in τ . Note that to first order, Ṡ(τ, S1) τ = ˙̄S1 τ .

S−2 = S̄1 + s1 + ˙̄S1 τ

= S̄1 + s−2

P−2 = P̄1 + ˙̄P1 τ

= P̄1 + p−2 ,

(16)

where p is the perturbation of the nominal paddle state.
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Fig. 3. Paddle Shape, ζ = (c/2) ξ2, and Impact CS

2) Impact Condition Function: We solve the general
impact condition function ∆ for τ using the approximations
(16). We approximate ∆ to first order in S, P about S̄1, P̄1.

∆
(
S−2 , P

−
2

)
= �����∆

(
S̄1, P̄1

)
+

∂∆ (S, P)
∂S

∣∣∣∣
S̄1,P̄1

s−2

+
∂∆ (S, P)

∂P

∣∣∣∣
S̄1,P̄1

p−2 (17)

0 = TS s
−
2 + TP p

−
2

= TS

(
s1 + ˙̄S1 τ

)
+ TP

˙̄P1 τ (18)

TS , TB are the Jacobians of ∆ for the ball and paddle
perturbations. We solve (18) for τ :

τ = −
(
TS

˙̄S1 + TP
˙̄P1

)−1

TS s1. (19)

For the specific system analyzed, we use the following
impact condition:

∆ (S, P) = iS S− iP P−R
iS = iP =

[
0 0 0 1 0

]
,

(20)

where R is the ball radius. We neglect the paddle’s shape
in the impact condition. ∆ just compares the z-coordinates
of the ball and paddle. An impact occurs if ∆ = 0. Since
the specific impact condition function is already linear, we
get TS = −TP = iS.

3) Impact Location: Due to the perturbations, the ball
does not hit the paddle in its center at x = ξ = 0.
The curvature of the paddle and the x-coordinate at impact
determine the angle δ at which the impact coordinate system
(CS ) C is in respect to the inertial CS I , see Fig. 3.

The impact function is applied in the impact CS C; we
define the rotation matrix ACI that rotates a vector from I
to C.

4) Impact Model: For the vertical impact velocities, we
use Newton’s impact laws assuming the ratio of the ball’s
mass to the paddle’s mass to be small; the ratio for the robot
prototype is 3× 10−4.

ż+
S = −ez ż−S + (1 + ez)żP, (21)

where żS and żP are the vertical velocities of the ball and
paddle, respectively. For the horizontal directions and spin,
we use the impact model derived in [21]. The horizontal CR
ex is defined as:

ex = −
ẋ+ −Rω+

y

ẋ− −Rω−y
. (22)

R is the ball radius. ex relates the velocity of the contact
point of the ball over the impact. The values of ex range
from -1 to 1.

Combined with conservation of angular momentum and
(21), we obtain the following impact function:

Γ (S, P) = S+ = CS S
− + CP P

−. (23)

CS , CP are the mappings of the pre-impact ball and paddle
state to the post-impact ball state, respectively. Note that (23)
is defined in the impact coordinate system.

CS =


1 0 0 0 0
0 1− k kR 0 0
0 α 1−Rα 0 0
0 0 0 1 0
0 0 0 0 −ez



CP =


0 0 0 0 0
0 k 0 0 0
0 −α 0 0 0
0 0 0 0 0
0 0 0 0 ez + 1


α =

ex + 1
1.4R

, k =
ex + 1

3.5
, β = k − 1− ez

(24)

5) Impact Function: (16) and (19) define the ball and
paddle state before impact. We apply the impact function
(23) on the rotated vectors and rotate the result back into the
inertial frame. We define

ΓI
(
S−2 , P

−
2

)
:= ATCIΓ

(
ACIS

−
2 , ACIP

−
2

)
. (25)

ΓI represents the impact function acting directly in I . We
approximate ΓI to first order to obtain the post-impact ball
state.

S+
2 = ΓI

(
S̄−2 , P̄

−
2

)
+

∂ΓI (S, P)
∂S

∣∣∣∣
S̄−2 ,P̄

−
2

s−2

+
∂ΓI (S, P)

∂P

∣∣∣∣
S̄−2 ,P̄

−
2

p−2

= S̄+
2 + s+

2 (26)

D. Free Fall until Apex

After the impact, the ball is in free fall until the nominal
apex time T̄3. The free fall is analogous to Section III-B. We
reuse M01 from (13) to map the perturbations at T̄1 + τ to
T̄3 + τ . We get

S
(
T̄3 + τ

)
= S̄3 +M01 s

+
2 . (27)

In order to obtain the ball state at the nominal apex time
T̄3, we compensate for τ analogous to (16):

S3 = S̄3 +M01 s
+
2 − ˙̄S3 τ. (28)

We combine (13), (16), (19), (26), (28) and obtain the
matrix M03 which maps the initial perturbations s0 over a
single bounce.

s3 = M03 s0 (29)
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Fig. 4. max
ex

ρ (Ax) for various Apex Heights H , ez = 0.8

For the specific system, the mapping M03 is a block-
diagonal matrix with blocks corresponding to x, ẋ, ωy and
z, ż.

M03 =
[
Ax 0
0 Az

]
, (30)

with

Ax =


2cβγT̄ 2

1
ez+1 + 1 T̄1

(
2cβγT̄ 2

1
ez+1 − k + 2

)
kRT̄1

2cβγT̄1
ez+1

2cβγT̄ 2
1

ez+1 − k + 1 kR

− 2cγαT̄1
ez+1 α− 2cγαT̄ 2

1
ez+1 1−Rα


Az =

aP (ez+1)2+γ(e2z+1)
2γ

(γ(ez−1)2+(ez+1)2aP )T̄1

2γ

(ez+1)2(γ+aP )
2γT̄1

aP (ez+1)2+γ(e2z+1)
2γ

 .
IV. DESIGN PARAMETERS

With the mapping M03, we analyze the local stability of
the system. The goal is to find stabilizing values for the un-
known design parameters curvature c and paddle acceleration
aP for a range of apex heights and ball properties.

We analyze the spectral radius ρ of M03 to determine the
stability of the system; if ρ is smaller than one, the system is
stable. The spectral radius of a matrix is defined as ρ (A) :=
max
i
|λi (A)|, where λi is the i-th eigenvalue of A.

Since Ax is independent of aP and Az is independent of c,
we can determine the two design parameters independently.

A. Paddle Curvature

Stability of the ball’s horizontal perturbations can be
achieved by choosing an appropriate paddle curvature as
sketched in Fig. 3. We evaluate the spectral radius ρ of Ax
over a range of apex heights and ball properties. We find that
ρ is sensitive to the apex height. The CR ez appears in Ax,
but has negligible influence on stability.

In Fig. 4 we show the maximum spectral radius of Ax over
the range ex ∈ [−0.5, 0.5] as a function of c for various apex
heights H .

We set the design specification for the first robot proto-
type to juggle at heights up to 1.2 m. Therefore, choosing
c = 0.36 m−1 satisfies the stability requirement. We further
predict that the ball should fall off the paddle for heights
larger 1.4 m.

Fig. 5. Fitted Gaussians for Apex Height Deviations with Standard
Deviations σH

B. Paddle Acceleration

Stability of the apex height is achieved by the proper
paddle acceleration. It has been shown in previous work that
a negative acceleration is stabilizing [8], [11], [12].

The spectral radius of Az is independent of the apex
height. For a range of aP ∈ [−1,−10] ms−2, the spectral
radius is constant and smaller than one for any given ez ∈
[0.7, 0.9]. We choose aP = −γ/2 which lies in the center of
the stable region.

V. ROBOT PROTOTYPE

We built a robot prototype (Fig. 1) with the determined
design parameters. It consists of a linear motor actuating a
solid aluminum paddle. The paddle was CNC-milled to the
desired shape and has a diameter of 0.3 m. We chose the
motor to be able to continuously juggle balls at heights up
to at least 1.2 m and ez larger 0.7 (tennis ball).

The quadratic trajectory of the paddle is driven by a servo
controller. A high level state machine running on a D-Space
real time control system [22] provides the profile parameters
to the controller and is timing the motion.

For given parameters ez, aP and H , the paddle’s trajectory
is fully defined except the duration the paddle is decelerating
around the nominal impact time. We determine this duration
by assuming an upper bound for a static error in ez .

A. Impact of Ball Properties on Performance

After some experiments with different balls, we observed
that the main source of noise in the measured impact
times and locations are stochastic deviations of the impact
parameters, i.e. ball roundness and CR. High precision balls,
which are specifically manufactured to have very precise
roundness for valve applications, introduce the least amount
of noise. Only these high precision balls allow the robot to
juggle at apex heights larger than 0.6 m. Less precise balls
(Superball, table tennis ball, etc.) generate too much noise in
the horizontal degrees of freedom and eventually fall off at
larger apex heights. We show a ball comparison in the video
submitted with this paper.
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Fig. 6. Impact Location Data for Paddle Curvature c = 0.36 m−1. Top:
Accumulated Impact Locations (x) and Paddle Center (+) for H = 1.05 m.
Bottom: Fitted Impact Coordinate Distributions.

B. Measurements

A piezo film strain gage attached to the paddle acting as
a contact microphone lets us measure the impact times. An
encoder on the linear motor provides information about the
paddle position. We measure the impact locations using a
video camera mounted above the paddle. We collected data
at three different nominal apex heights: 0.5, 0.8 and 1.05 m.
In the three experiments, we recorded a total of 5301, 4549
and 5789 consecutive impacts, respectively.

1) Apex Height: From the paddle positions of two con-
secutive impacts and the impact time difference, we estimate
the apex height of the ball. In Fig. 5, we show the Gaussian
distributions fitted to the data.

2) Impact Locations: In Fig. 6, we show the results of the
impact location measurements. The distributions are rather
narrow. However, this performance can only be achieved with
a precision ball. For the measurements presented, we used a
solid PA-6.6 ball with a diameter of 0.012 m.

The measurements confirm the assumption that x, ωy and
y, ωx of the ball are uncorrelated. The covariance matrix of
n = 5789 measured impact coordinates X = (x, y) with
x, y ∈ Rn×1 for H = 1.05 m is

Fig. 7. Noise Histograms and fit Gaussians for H = 1.05 m.

10−3 ·
[

0.267 −0.003
−0.003 0.273

]
m2. (31)

We measured small non-zero means in the impact location
distributions (Fig. 6). This is due to a slightly misleveled
paddle and would be zero for a perfectly leveled paddle.

C. Parameter Identification

From the impact times, paddle positions and velocities at
impact, we identify ez from the data. The parameter slightly
decreases with increasing heights and lies in the interval ez ∈
[0.79, 0.82].

We estimate the horizontal impact parameter ex from the
data by minimizing the deviation of the predicted post-impact
horizontal velocities to the measured velocities. As we have
no measure of the ball’s spin, this proves to be difficult; we
obtain three different values for the three impact heights. For
H = 1.05 m, we even obtain ex = 1.2, which lies outside
the range of possible values for ex. Without measuring the
spin of the ball, we cannot properly estimate ex.

D. Noise Identification

We identify the noise as the deviations from the measured
to the predicted post-impact velocities. For the prediction, we
use the linear model derived in Section III with the identified
parameters of ez . For the unknown parameter ex, we choose
a fixed value of ex = 0.2, assuming a gripping ball less
elastic than a Superball [21].

S+
2,meas = S+

2,pred + ν, (32)

with ν = (0, νx, 0, 0, νz)
T . We also measure the noise

in y-direction. This is straightforward, since this direction
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is independent of the others (31). We can extend the linear
model to include the y-direction.

Since we cannot measure the ball’s spin, we assume zero
spin at all times and capture the influence of spin on the
system in the noise. In Fig. 7 we show fitted Gaussian
distributions to the measurement histograms of νx, νz . The
histogram of νz appears less Gaussian since the actual paddle
deceleration is not perfectly linear.

We analyze the auto-correlation sequences of the noise
data and learn that a white noise model is a good approxi-
mation to the measured noise.

VI. REFINING THE DESIGN PARAMETERS

Now that we characterized the noise introduced into the
system as white noise, we can use the H2 norm to refine
the design parameters. An interpretation of the H2 norm is,
roughly speaking, the gain of a system when the input is
white noise [1]. By minimizing the H2 norm, we can find
the design parameters that maximally reject the noise and
improve the performance of the system.

Analogous to the stability analysis in Section IV, we can
optimize the design parameters c and aP independently as
M03 is block diagonal and the noise introduced in the vertical
and horizontal directions only impacts the respective degree
of freedoms.

A. Optimized Paddle Curvature

We want to find the paddle curvature parameter c that
minimizes the H2 norm over a range of ball properties. In
order to apply the norm to the system, we have to derive the
input-output representation of the system for the horizontal
directions. The x and y directions are independent, hence
the paddle curvature minimizing the two dimensional system
also minimizes the three dimensional one. The state is sx =
(x, ẋ, ωy). The system output wx is equivalent to the impact
location on the paddle, which is what we want to keep small.
The input is dx = νx, the post-impact velocity deviation.

sx(k + 1) = Axsx(k) +Bxdx(k)
wx(k) = Cxsx(k)

(33)

We call this LTI system Gx. It is discrete with a sample
time of 2T̄1. The matrices are

Bx =
[
T̄1, 1, 0

]T
Cx =

[
1, T̄1, 0

]
. (34)

We find c = 0.25 from

min
c

max
ex

‖Gx (c, ex)‖2︸ ︷︷ ︸
J(c)

(35)

for H = 1.05 m and ez = 0.8. Since we could not identify
the parameter ex from the measurements, we minimize a
worst case value of the H2 norm over the range ex ∈
[−0.5, 0.2]. This range captures a slipping to gripping impact
of the ball which is less elastic than a Superball, see [21].

TABLE I
IMPACT LOCATION STANDARD DEVIATIONS

H c = 0.36 m−1 c = 0.24 m−1 Change
0.5 m 0.0120 m 0.0130 m 9.1%
0.8 m 0.0134 m 0.0141 m 4.8%
1.05 m 0.0163 m 0.0147 m -10.1%

1) Results: We manufactured a paddle with a slightly
smaller c = 0.24 m−1, which is acceptable as J(0.24)
and J(0.25) are both equal to 1.72 for unscaled input. We
measured the impact locations using the new paddle and
show a comparison of the measured standard deviations of
the impact x-coordinate in Table I.

The system performance with c = 0.24 m−1 decreases
for lower heights; we can accept this as increased impact
location deviations are more likely to cause the ball to fall
off at larger heights.

We achieve larger apex heights with the new paddle; this
is predicted in Fig. 4. For c = 0.24 m−1, the robot juggles
at heights up to 2.1 m. We show this in the video submitted
with the paper.

B. Optimized Paddle Acceleration

Analogous to the paddle shape optimization, we can
optimize the paddle acceleration aP . We build the input-
output system for the vertical directions. The state vector
becomes sz = (z, ż). The input is dz = νz , the post-impact
velocity deviation. We seek to minimize the output wz , which
is equivalent to the z-coordinate of s1, the perturbation in
height at nominal impact time.

sz(k + 1) = Azsz(k) +Bzdz(k)
wz(k) = Czsz(k)

(36)

We call this discrete LTI system with sample time 2T̄1

Gz . The matrices are

Bz =
[
T̄1, 1

]T
Cz =

[
1, T̄1

]
. (37)

We obtain aP = −4.95 ms−2 from

min
aP

‖Gz (aP )‖2 (38)

with H = 1.05 and ez = 0.8. This value is almost
identical to the stabilizing value we chose in Section IV of
−4.9 ms−2.

VII. H2 OPTIMAL CONTROLLER FOR APEX

Since the horizontal degree of freedoms are decoupled
from the vertical ones, we cannot actively control the ball’s
horizontal impact location. However, we can use feedback
control to increase the vertical performance. We design a
feedback controller K that minimizes the H2 norm of the
closed-loop system.

We use τ , the impact time deviation as feedback; the
contact microphone we attached to the paddle provides this
measurement. As control action, we use the deviation from
nominal impact height and velocity of the paddle, thus
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u = (uz, uż)
T . In order to design the controller for Gz ,

we extend the system (36) to include τ and u:

q(k + 1) = Ãq(k) +B̃1dz(k) +B̃2u(k)

wz(k) = C̃1q(k) +D̃11dz(k) +D̃12u(k)

τ(k) = C̃2q(k) +D̃21dz(k) +D̃22u(k).

(39)

For determining u(k), we only have the previous impact
time. We capture this measurement delay in the system
dynamics by extending the state to q =

[
sTz , τ

]T
. This allows

us to calculate u = Kτ .

Ã =
[
Az 0
Cτ 0

]
B̃1 =

[
Bz
0

]
B̃2 =

[
Bu
Dτ

]
C̃1 =

[
Cz 0

]
C̃2 =

[
0 0 1

]
D̃11 = D̃12 = 0 D̃21 = D̃22 = 0

(40)

We already derived Cτ in (19). We can derive Dτ in the
perturbation analysis by adding u to p−2 in (16).

With the system established, we can find the controller
matrix K that minimizes the closed-loop H2 norm from
input dz to wz . For H = 1.05 m, ez = 0.8, aP = −γ/2
and scaling the input with the measured σνz = 0.015,
we achieve a closed-loop norm of 0.014. Given the same
parameters, the open-loop norm is 0.017. We can only reduce
the norm by 14% with feedback control. Considering that the
measured standard deviations of the apex height distributions
are already small (Fig. 5), the improvement is marginal.

Note that by choosing D̃12 = 0, we do not constrain the
control action. Therefore, the improvement is an upper bound
that may not be physically possible; for example, the stroke
of the linear motor is limited.

VIII. CONCLUDING REMARKS

We showed that feedback control is not necessary for the
apex height. However, feedback control in an adaptive setting
as in [23] can relax the a priori knowledge about the CR and
compensate for the decrease of the CR at increasing height.
This reduces the required stroke of the linear motor as the
mean impact time deviation is eliminated.

We have recently identified that the paddle shape optimiza-
tion can be improved by considering the fact that the noise
amplitude we determined in Section V-D is also a function
of the unknown parameter ex. We are currently working on
incorporating this knowledge into the optimization process
and plan to manufacture a new paddle in the near future.
We will also look into finding a way to reliably estimate the
impact parameter ex.

Lastly, we believe that determining the optimal paddle
acceleration experimentally, i.e. by minimizing the measured
apex deviations, and comparing the results with [12] would
yield interesting insights.
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