
Simulation-Based LQR-Trees with Input and State Constraints

Philipp Reist and Russ Tedrake

Abstract— We present an algorithm that probabilistically
covers a bounded region of state space with a sparse tree of
feedback stabilized trajectories leading to a goal state. The
generated tree serves as a lookup table control policy to get
any initial condition within the bounded region to the goal
state. The approach combines motion planning with reasoning
about the set of states around the trajectories for which the
feedback policy of the trajectory is able to stabilize the system.
We propose approximating this set by sampling and simulation,
which allows enforcing input and state constraints. By taking
the approximated sets into account, we only add trajectories
to the tree where needed. In practice, we obtain trees of
trajectories with a low number of nodes compared to state space
discretizing methods. We show simulation results obtained with
model systems and analyze the performance and robustness of
the algorithm.

I. INTRODUCTION

The proposed algorithm bases on the ideas presented in
[1]. By combining motion planning and formally verifying
the stabilizable set around a trajectory, the algorithm in [1]
produces a sparse tree of locally optimal trajectories that can
bring any initial condition of a bounded region of state space
to a goal state. Each trajectory in the tree has an associated
time varying linear quadratic regulator (TVLQR) policy. For
each trajectory, the set of states which can be stabilized by
the linear controller is verified by a formal method, using
a sum of squares (SoS) optimization [2]. Reasoning about
the coverage of a trajectory allows to only generate new
trajectories where needed, resulting in a sparse tree.

The tree is generated offline and can be used to control
nonlinear dynamic systems (e.g. robotic balancing tasks,
walking and flying robots, etc.) in real time as a lookup
table policy. The class of algorithms proposed here and in [1]
aim at generating control policies for complicated nonlinear
systems when a linear controller is insufficient or the number
of states prohibits the application of discretization-based
methods like policy iteration.

In contrast to [1], we replace the formal verification of
the stabilizable set with SoS around a given trajectory by
approximating it using sampling and simulation. The formal
approach can take input constraints into account, but the
approximation becomes too conservative; also, it is not
straightforward to incorporate state constraints in the formal
approach. However, both state and input constraints are
present in robotic systems; using simulation, the algorithm
generates a tree enforcing these constraints.

We only replace the estimation along the trajectories by
the simulation approach; we still verify the approximation to
the basin of attraction of the goal state using formal methods.

P. Reist and R. Tedrake are with CSAIL at MIT, Cambridge MA, USA.

We obtain the set of states around the goal state for which the
nonlinear closed loop system is asymptotically stable from
this approximation.

It is remarkable that even though we use a simulation-
based method to estimate the stabilizable set around the tra-
jectories, we can still maintain all the probabilistic coverage
guarantees that are obtained using the formal method. The
coverage mechanism remains the same for both the formal
and the sampling approach.

For this algorithm, the notion of a stabilizable set is
more general than asymptotic convergence. We not only
approximate the set of states around a trajectory that can
be brought to the goal, but also make sure that the states
in this set reach the goal without violating state and input
constraints. In the following, we use a more general term for
this set and call it the ‘funnel’ of a trajectory (inspired by
[3] and [4]).

Assume a tree consisting of a set of TVLQR stabilized
trajectories leading to a goal state. Each node of this tree
consists of a nominal state belonging to one of the tra-
jectories, the respective TVLQR control policy and a local
description of the funnel. The proposed algorithm works
as follows: First, we generate a random sample from the
subspace R we want to cover. Next, we find the nodes of the
tree whose local description of the funnel contain the sample.
Each node provides the starting point of a time-varying
nominal trajectory and feedback policy. We simulate the
system using these policies while applying input saturation
from the random sample as initial condition. A simulation
is successful if the sample reaches the approximated basin
of the goal state without violating any state constraints. If
the simulation is successful, we proceed to the next sample.
If the simulation fails, we shrink the funnel of the nominal
trajectory we executed to not include the trajectory generated
in the simulation. If the sample never reaches the goal basin
with the existing policies, we use motion planning to connect
the failed sample to the tree. We generate the TVLQR policy
for the newly generated nominal trajectory and add it to
the tree, initializing it’s funnel to cover the whole subspace
R. If motion planning fails to find a feasible trajectory to
connect the sample to the tree, we determine the sample to
be (temporarily) unreachable. The algorithm terminates after
a fixed number of random samples consecutively reached
the goal using the existing tree, ignoring samples that are
not reachable.

In the following, we first review related work and compare
it to our approach. Next, we present the key concepts of
the algorithm and a detailed description of the algorithm’s
different steps. Finally, we show the performance of the

algorithm in simulation on two model systems.

A. Related Work

The algorithm is inspired by randomized motion planning,
i.e. RRTs [5]. Randomized motion planning demonstrated
that it scales well to higher dimensional systems, sacrificing
optimality but generating feasible motion plans.

The approach is similar to the work of Atkeson [6], who
uses trajectories as a sparse representation of the global value
function of a system. The authors propose building a library
of trajectories leading to a goal state and approximating
the global value function with quadratic models along these
trajectories. Trajectories are added based on how well two
adjacent trajectories agree on the value function in between
them. The resulting policy is not time based like in our
approach, but transformed to a state dependent policy using
a nearest neighbor lookup. The policy of the closest state
in the trajectory library is executed, where the closeness is
measured using a weighted Euclidean norm [7].

In contrast, the proposed algorithm aims not at producing
globally optimal trajectories or estimating the global value
function; we are more interested in designing a scalable
algorithm that yields feasible policies.

As Atkeson points out, an advantage of using trajectories
to represent a policy is that one avoids the problems that a
discretization of state space generates. It is remarkable that
in practice, we realized policies for the cart-pole (4 states)
swing-up with trees of between 20000 and 200000 nodes.
The equivalent resolution of a state space discretization
would be between 12 and 21 grid points per dimension,
which is quite poor.

II. KEY CONCEPTS

A. Discrete-Time TVLQR
We consider sampled-data feedback control of continuous

time dynamical systems. Therefore, we derive the controllers
and goal state basin of attraction directly in discrete-time.
The sampled trajectories stored in the tree are stabilized using
a time varying linear quadratic regulator (TVLQR). In the
following, we derive the optimal feedback policy and cost-to-
go. The system dynamics of a smoothly differentiable system
are given by

ẋ = f (x,u) , (1)

where x ∈ Rn is the state of the system and u ∈ Rm is the
input to the system. Given a sampled nominal trajectory

x0k,u0k, k = 0, 1, ..., N, (2)

with x0k = x0 (t = k · dt), dt is the sample time and N + 1
is the number of elements. We linearize and discretize the
system (1) around this trajectory to obtain the discrete linear
system dynamics

x̄k+1 = Akx̄k + Bkūk, (3)

with

x̄k = xk − x0k (4)
ūk = uk − u0k.

We derive the TVLQR trajectory stabilizer according to Bert-
sekas [8]. The quadratic objective function to be minimized
is

Jk (x̄k) = x̄T
NSN x̄N +

N−1∑
n=k

[
x̄T

nQx̄n + ūT
nRūn

]
(5)

SN ≥ 0, Q ≥ 0, R > 0, (6)

with SN , Q and R being the penalty matrices on the final
state deviation and state and input deviation from the nominal
trajectory, respectively. We assume the optimal cost-to-go to
have a quadratic form

J∗k (x̄k) = x̄T
k Skx̄k, (7)

with cost-to-go matrix Sk ≥ 0. Applying the dynamic
programming update rule combined with the assumption on
the optimal cost and linearized system dynamics, we obtain
the optimal input

ū∗k = −
(
R + BT

k Sk+1Bk

)−1
BT

k Sk+1Akx̄k

= −Kx̄k, (8)

where K ∈ Rm×n is the compensator matrix. We further
obtain the update rule for the discrete time TVLQR optimal
cost-to-go

Sk =Q + AT
k

(
Sk+1 (9)

− Sk+1Bk

(
R + BT

k Sk+1Bk

)−1
BT

k Sk+1

)
Ak.

In case the trajectory ends at an equilibrium point of the
system (1), we obtain the boundary condition SN from
the stabilizing solution to the time invariant version of the
discrete algebraic Riccatti equation (9) (Sk = Sk+1 = SN).

B. Approximation to the Goal State Basin of Attraction

After simulating a random sample, we check if the tree
managed to bring the sample inside a region around the goal
state, which we describe by a hyper-ellipsis defined by the
final cost matrix SN .

In the following examples, we use goal states xG which
are stabilizable. This implies that we can design a linear time
invariant linear quadratic regulator (LTI-LQR) controller for
the goal state. Furthermore, we can approximate the basin
of attraction of the closed-loop nonlinear system at the goal
state using a formal method. In the following, we present the
principle described in [1], in a discrete-time setting.

We are given discrete-time, nonlinear closed-loop system
dynamics of the form

x̄k+1 = f (x̄k)
x̄k = xk − xG, (10)

where xG is an equilibrium of the system, i.e. f (0) = 0.
We define the basin as the largest set of states for which the
optimal cost-to-go decreases with every step

J∗ (f (x̄k))− J∗ (x̄k) < 0, (11)

which represents a discrete-time formulation of a Lyapunov
function. Every state within the final basin should always

take a step towards the goal, reducing it’s cost-to-go with
every step and eventually reaching xG, implying asymptotic
stability. We require this to hold over the domain B(ρN)
defined as

B(ρN) :=
{
x|xTSNx ≤ ρN

}
, (12)

with SN being the LQR cost-to-go matrix. The goal is now
to search for the largest ρN for which (11) holds, i.e. we
are looking for the largest B(ρN) completely contained in
the basin of attraction of the nonlinear closed-loop system.
We add B(ρN) to the problem using the Lagrange multiplier
h(x̄k)

J∗ (f (x̄k))− J∗ (x̄k) + h(x̄k)
(
ρN − x̄T

k SN x̄k

)
< 0 (13)

h(x̄k) = mT (x̄k)Hm(x̄k), H ≥ 0,

where m(x̄k) is a vector of monomials of order zero to Nm

in the components of x̄. Note that with <, we state that the
left hand side of (13) needs to be a negative definite function
of x̄k.

We test (13) for negative definiteness using a SoS program
[2]. For a given value of ρN , the SoS program is feasible
if it can find values for the elements of the matrix H such
that (13) holds. In order to execute the program, (13) has to
be a polynomial expression. All summands in (13) except
J∗ (f (x̄k)) are already polynomials. To make the whole
expression polynomial, we approximate J∗ (f (x̄k)) using a
Taylor expansion

Ĵ∗ (f (x̄k)) = J∗ (f (x̄k = 0)) +
∂J∗ (f (x))

∂x

∣∣∣∣
x=0

x̄k + . . .

(14)
to sufficiently high order, omitting the higher order terms.
We now perform a binary search on ρN to find the maximal
ρN that results in a feasible SoS program.

Since this step does not take input constraints into ac-
count, we check if any of the states on the surface of the
hyper-ellipsis violate the input constraints and reduce ρN if
necessary.

III. THE ALGORITHM

In the following, we explain the steps of the algorithm in
more detail. An overview of the algorithm in pseudocode is
stated in Algorithm 1.

A. The Tree

Each node i in the tree consists of 6 elements:
1) x0i: Nominal state.
2) u0i: Nominal input.
3) Si: Cost-to-go matrix. Ji(x̄) = x̄TSx̄.
4) K: TVLQR compensator matrix. ū = −Kx̄.
5) φ: Local description of funnel. A state x is in node i’s

funnel if (x− x0i)TSi(x− x0i) < φi.
6) p: Pointer to parent node (next node in trajectory if

time index advances by 1).
For the goal node xG, φ = ρN and p = NULL. From each
node starts a time varying nominal input and state trajectory
that leads to the goal: u0k,x0k, k = 0, . . . , N with x0N =

Algorithm 1 Simulation-Based LQR-Trees
1: [A, B]⇐ linearization around xG, uG and discretization
2: [K, S]⇐ dlqr(A, B, Q, R)
3: ρN ⇐ Approximated basin of xG

4: T(1)⇐ {xG,uG, S, K, ρN , NULL}
5: for j = 1 to maxIter do
6: xSample⇐ random sample
7: Γ⇐ build simulation priority array
8: for i = 1 to |Γ > 0| do
9: xSim⇐ simTree(T, i, xSample)

10: if isInGoalBasin and constraintsOK then
11: continue; break if enough successes
12: else
13: T⇐ adjustFunnel(T, i, xSim)
14: end if
15: end for
16: if noSimSuccessful then
17: [iNear]⇐ distanceMetric(T, xSample)
18: [T, foundTraj]⇐ growTree(T, iNear, xSample)
19: if foundTraj then
20: Reset success counter
21: end if
22: else
23: Increment success counter; terminate if converged
24: end if
25: end for

xG. In the following, we call the nominal trajectory starting
at a node combined with the TVLQR compensator matrices
the node’s policy.

B. Sampling and Simulation

The goal of the algorithm is to cover a predefined subspace
R of the state space. We sample uniformly from R to
generate the random sample xS . This sample serves as an
initial condition of the system for the subsequent simulations.

After generating a random sample, we simulate the exist-
ing tree T. First, we build the array Γ, which determines the
simulation priority of the tree nodes. It’s elements are

γi = φi− (xS − x0i)
T Si (xS − x0i) , i = 1, . . . , |T| (15)

with |T| being the total number of nodes in the tree. The γi

represent a measure of how ‘far’ the sample lies within the
ellipsis of the respective node in the tree. Any node with a
positive γi should be able to get the sample to the goal basin
B(ρN) when the node’s policy is applied.

We sort Γ in descending order and simulate the sample
if any element of Γ is positive. Only simulating the sample
with policies of nodes with γi > 0 speeds up the simulation
step as many nodes that are likely to fail are ignored. If there
are no nodes with γi > 0, we proceed to the motion planning
step, see Section III-C. We start simulating the sample using
the policy of the node q with the largest γq in Γ, i.e. the first
element of Γ. This results in an efficient shrinking of φi.
Since we are shrinking the funnel around a trajectory from

x
0N

x
N

f
N-1

x
S

x
N-1

f
0

+

f
0

-

x
00 x

0N-1

f
1

+

B(ρ
N

)

Fig. 1. Adjusting the Funnel after a Failed Simulation. The simulated
trajectory (solid black) failed to reach the goal basin B(ρN) using the
policy starting at node q : x00, φ0. However, the funnel described by
the darker grey ellipses defined by φ−0,1 around the first two nodes of the
policy’s nominal trajectory (dashed line) predicted a successful simulation.
Therefore, we adjust φ−0,1 to φ+

0,1 according to (17), resulting in the light
grey ellipses. The simulated state at time index N − 1 was not inside the
ellipsis of node N − 1 and thus φN−1 remains unchanged.

covering the whole subspace R, the γi are a measure of how
likely it is that the respective φi needs more shrinking.

We simulate the nonlinear system using the random sam-
ple xS as initial condition and the policy of node q for
t ∈ [0, N · dt]. The simulation generates a sampled trajectory
of the system with states x0 = xS ,x1, ...,xN . After the
simulation, we check if the system reached the approximated
basin of attraction of the goal state B (ρN):

(xN − xG)T SN (xN − xG) ≤ ρN . (16)

The input constraints are enforced using a saturation on the
input; we then only have to check whether the trajectory
of the system generated in the simulation violates any state
constraints.

If the policy of node q is successful, we continue with
the next node in Γ. After a fixed number (we use 10)
of successful simulations, we proceed to the next random
sample; it would be sufficient to proceed after the first
success, however, we set the threshold higher to efficiently
sample more funnels with a single sample.

If the policy of node q fails, we adjust the funnel of the
nominal trajectory starting at q setting

φk = x̄T
k Skx̄k, k = {0, 1, ..., N − 1}, (17)

with x̄k = xk−x0k and x00 being the nominal state of node
q. We only adjust φk if φk > x̄T

k Skx̄k. We only shrink the
funnels and never expand them. This is illustrated in Fig. 1.

C. Growing the Tree

If a random sample xS never reaches B(ρN) using the
existing policies in the tree, we need to expand the tree.
We find the closest node inear to xS in the tree using
a distance metric and use motion planning to generate a
trajectory connecting the sample to inear. In the current
implementation, we use the distance metric described in [1]
and [9]. It bases on a linearization of the system dynamics

around the sample point and calculating the optimal control
cost-to-go from the nodes in the tree. Based on this cost, we
choose the closest node to connect to.

The distance metric not only provides the closest node, but
also an initial guess of the input û∗ to the system to reach
the sample from the closest node. We further refine the open-
loop trajectory given by û∗ with a direct collocation [10]
implementation using SNOPT [11]. If motion planning fails,
we discard the sample as (temporarily) unreachable. As the
tree grows, we expect that sample to be included in a funnel
of the tree if it is reachable.

After finding the connecting trajectory, we stabilize it
using the discrete TVLQR controller derived in Section II-A,
setting SN to Sinear . This generates a Kj ,Sj for every node
in the new trajectory and we add the new nodes to the tree,
setting φj → ∞, so that the funnel of the added trajectory
covers the whole subspace R.

D. Algorithm Termination Criteria

We terminate the algorithm after we encountered a fixed
number of random samples that either successfully reached
the goal or are unreachable, i.e. motion planning fails.

E. Using the Generated Tree

After termination of the algorithm, we obtain a tree T
that probabilistically covers R. To decide which stabilized
trajectory to apply to a given initial condition xIC , we search
for the node i with

i = argmin
j

(xIC − x0j)T Sj (xIC − x0j)

subject to: γj > 0 (18)

Thus we choose the policy starting at the node with the low-
est cost-to-go for the initial condition whose funnel contains
the initial condition. Since we approximate the funnel of a
trajectory as we generate the tree, we can probabilistically
guarantee that the policy we choose gets the initial condition
to the goal.

IV. SIMULATION EXAMPLES

A. Simple Pendulum

We illustrate the algorithm using a simple, well visu-
alizable system: the damped simple pendulum with input
constraints. The parameters are m = 1.0 kg, l = 0.5 m,
g = 9.8 m/s2, b = 0.1 kgm2/s with the input constrained
to ±3 Nm, requiring at least a single pump to swing up. We
set the cost matrices for the goal state LQR controller to
Q = diag(10, 1) and R = 15.

The evolution of the tree is illustrated in snapshots in
Fig. 2. Note that wrapping of the coordinate system was
not taken into account. The algorithm takes about half an
hour to converge, with no attempts made to optimize run
time. A large part of this time is due to the high threshold of
5000 consecutive successful simulations before the algorithm
terminates. The average time for a random sample to be
simulated for the whole tree was 0.27 s and stays almost
constant over all iterations. Major spikes in time to simulate

�1 0 1 2 3 4
−20

−15

−10

−5

0

5

10

15

20
dq

/d
t��
(r

ad
/s

)

q��(rad)

(a) Iteration 2, 1 Trajectory, |T| = 41. The final basin is plotted.
The black cross is the goal state. The state space shown represents
the subspace R. Note that the funnel of the first added trajectory is
not plotted, as it would cover the whole subspace.

�1 0 1 2 3 4
−20

−15

−10

−5

0

5

10

15

20

dq
/d

t��
(r

ad
/s

)

q��(rad)

(b) Iteration 28, 2 Trajectories, |T| = 81. The funnel of the first
trajectory was shrunken by unsuccessful simulations.

�1 0 1 2 3 4
−20

−15

−10

−5

0

5

10

15

20

dq
/d

t��
(r

ad
/s

)

q��(rad)

(c) Iteration 6086, 12 Trajectories, |T| = 477. 5000 consecutive
random initial conditions were successfully brought to the goal state.

Fig. 2. Tree Evolution Phase Plots for Simple Pendulum

a sample can be observed after the tree has been grown and
many funnels are adjusted.

B. Cart-Pole

mC

mP

l

u

Fig. 3. The Cart-Pole: mC = 1.0 kg, mP = 1.0 kg, l = 0.5 m, g =
9.8 m/s2 with the input u constrained to±30 N and the horizontal position
x constrained to ±0.45 m. We chose Q = diag(50, 5, 40, 4) and R = 1.

We show the state constraint capability with the cart-pole,
see Fig. 3. It consists of an actuated cart with a passive
pendulum attached. The state limitation is given by a limited
rail on which the cart can move; a constraint often found in
laboratory setups of this system.

Note that we chose the region R to be smaller in hor-
izontal position x than the state constraints. We also set
the constraints for the motion planning algorithm to be a
shrunken version of the state constraints. This facilitates the
algorithm in the sense that the controller can still take action
on trajectories close to the state constraints without violating
the constraints.

The algorithm takes significantly longer for the cart-pole
than for the simple pendulum. It converged after 74375
iterations generating a tree with 11917 nodes and took about
32 hours on an average PC. For convergence, we required
that the tree successfully brings 5000 consecutive random
samples to the goal; we ignore unsuccessful samples that
failed to connect to the tree. For this specific run, we had
seven unreachable samples during the final 5000 iterations
that could not be connected to the tree using motion planning.
The large number of iterations needed is partly because of
the doubled dimensionality compared to the pendulum, but a
larger part is due to the increased complexity of adding the
state constraints. Running the algorithm with the exact same
parameters, only omitting the state constraints, it converged
after 5821 iterations, producing a tree of 881 nodes in 2
hours.

V. BASIC ROBUSTNESS ANALYSIS

We compared the performance of the generated policy
for different model parameters than what the policy was
designed for. For simplicity, we just introduced a scale factor
that scales the mass of the cart and mass and length of
the pendulum, e.g. mP,sim = κ ·mP , mC,sim = κ ·mC ,
lsim = κ · l. We ran simulations with the scaled parameters
from 10000 random initial conditions uniformly drawn from
the subspace R the algorithm was designed for. We further
replaced the success criteria of ending up within the final
basin by checking the actual simulated state for convergence

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−1

0

1

−3 −2 −1 0 1 2 3 4 5 6
−5

0

5

x (m)

dx
/d

t (
m

/s
)

q (rad)

dq
/d

t (
ra

d/
s)

(a) Iteration 14, 5 Trajectories (solid red), |T| = 852. The blue overlayed
rectangle represents the subspace R that the algorithm iteratively covers
with stabilized trajectories. The black cross is the goal state. Note that we
do not plot the funnels as the projections from 4D to 2D can be misleading.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−1

0

1

x (m)

dx
/d

t (
m

/s
)

−3 −2 −1 0 1 2 3 4 5 6
−5

0

5

q (rad)

dq
/d

t (
ra

d/
s)

(b) Iteration 74375, 134 Trajectories (solid red), |T| = 11917. The
algorithm terminated after 5000 consecutive random initial conditions
successfully reached the goal state.

Fig. 4. Generated Tree Phase Plots for the Cart-Pole

to the goal state. That means we simulated longer than the
nominal time of the executed trajectory and applied the goal
state controller for the exceeding simulation time.

We show the resulting percentages of successful simula-
tions in Table I for the case of the tree generated with state
constraints (A) and the tree without state constraints (B).
We also ran the policy generated without state constraints
on the constrained setup to compare the performance (C).
Since we chose the weights in Q for the states x and ẋ
to be quite large, it could be that the controllers perform
similarly. However, the percentages show that generating the
tree with explicitly taking the state constraints into account
results in a higher performance.

TABLE I
SIMPLE ROBUSTNESS ANALYSIS FOR THE CART-POLE

κ % Suc. (A) % Suc. (B) % Suc. (C)
0.8 2.82 13.57 4.31
0.85 4.92 99.63 14.50
0.9 78.48 100.00 46.15
0.95 99.34 100.00 43.40
1.0 99.75 100.00 46.59
1.05 99.27 100.00 63.07
1.1 95.92 99.98 53.06
1.15 83.56 99.80 25.31
1.2 51.10 97.89 14.67

VI. DISCUSSION
It is unlikely that a hyper-ellipsis is the best geomet-

rical primitive to describe the funnel around a trajectory.
Simulation based approximation of the funnel would allow
exploring different primitives that could potentially yield
tighter fits to the real funnel, further improving the sparsity
of the resulting tree. The advantage of the hyper-ellipsis we
propose is that they are simple to reason about geometrically
and are founded on the TVLQR design, thus are dynamically
plausible.

We show a set of simulated trajectories from random initial
conditions for the cart-pole in the video accompanying this
submission. It is interesting that for some initial conditions
the simulation using the tree generated for the unconstrained
problem seems to outperform the tree for the constrained
problem, even without violating the state constraints. This
could be due to effects of the imperfect distance metric and
local minima during the motion planning step. A possible
way to improve the results is to seed the tree with some
carefully designed trajectories from key initial conditions,
e.g. a good swing up trajectory for the cart-pole. However,
the results we show were obtained without seeding. Cur-
rently, we are working on evaluating the performance of the
proposed algorithm on a laboratory setup cart-pole system.

REFERENCES

[1] R. Tedrake, “LQR-trees: Feedback motion planning on sparse random-
ized trees,” in Proceedings of Robotics: Science and Systems, Seattle,
USA, June 2009.

[2] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, SOS-
TOOLS: Sum of squares optimization toolbox for MATLAB, 2004.

[3] M. Mason, “The mechanics of manipulation,” in Robotics and Automa-
tion. Proceedings. 1985 IEEE International Conference on, vol. 2, Mar
1985, pp. 544–548.

[4] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential Com-
position of Dynamically Dexterous Robot Behaviors,” I. J. Robotic
Res., vol. 18, no. 6, pp. 534–555, 1999.

[5] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[6] C. Atkeson, “Using local trajectory optimizers to speed up global
optimization in dynamic programming,” in Advances in Neural Infor-
mation Processing Systems. Morgan Kaufmann, 1994, pp. 663–670.

[7] M. Stolle and C. G. Atkeson, “Policies based on trajectory libraries,”
in Proceedings of the International Conference on Robotics and
Automation (ICRA), 2006.

[8] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. I.
Athena Scientific, 2005.

[9] E. Glassman and R. Tedrake, “Lqr-based heuristics for rapidly explor-
ing state space,” Submitted to ICRA 2010, 2009.

[10] J. Betts, Practical Methods for Optimal Control using Nonlinear
Programming. ASME, 2002.

[11] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM Review, vol. 47, no. 1,
pp. 99–131, 2005.

