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Design and Analysis of a Blind Juggling Robot
Philipp Reist, Student Member, IEEE, and Raffaello D’Andrea, Fellow, IEEE

Abstract—We present the design of the Blind Juggler: a robot
that is able to juggle an unconstrained ball without feedback at
heights of up to 2 m. The robot actuates a parabolic aluminum
paddle with a linear motor. We achieve open-loop stability of the
ball trajectory with two design parameters: 1) the curvature of
the parabolic paddle and 2) the acceleration of the paddle at im-
pact. We derive a linear map of perturbations of the nominal ball
trajectory over a single bounce and obtain local stability of the
trajectory by tuning the eigenvalues of this mapping with the two
design parameters. We consider nine ball states in this analysis,
including ball spin. Experimental data provide the impact states
of the ball and paddle. From these data, we can identify system
parameters and infer the process noise introduced into the system.
We then combine the experimental noise power spectral densities
with a model of the system and optimize the design parameters
such that the impact of the process noise on juggling performance
is minimized. Theoretical as well as experimental results of the
optimization are discussed.

Index Terms—Bouncing ball, dexterous manipulation, dynam-
ics, juggling, mechanism design.

I. INTRODUCTION

THE Blind Juggler, which is shown in Fig. 1, demonstrates
that high-performance robotic juggling of unconstrained

balls is possible without using sensors. The Blind Juggler can
juggle at apex heights of up to 2 m, even though the robot cannot
tilt or pan the aluminum paddle, which is actuated by a linear
motor. In effect, the Blind Juggler can stabilize a ball in three
dimensions with only a single actuated degree of freedom. Since
there is no feedback, we achieve open-loop stability of the ball
trajectory using two key design elements: 1) The paddle has
a slightly concave, parabolic shape, which keeps the ball from
bouncing off the robot; and 2) a decelerating striking motion of
the paddle stabilizes the apex height of the ball. In experiments,
the Blind Juggler is able to continuously juggle a variety of
balls at different heights, and exhibits substantial robustness to
horizontal and vertical perturbations.

In particular, the two key design parameters are the curvature
of the parabolic paddle shape and the acceleration of the paddle
at ball impact. We determine the specific values of the design
parameters by analyzing the local stability of the nominal ball
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Fig. 1. The Blind Juggler bouncing a superball. The user interface features
two buttons to control the juggling height.

trajectory. Using a model of the ball dynamics, we perform a
perturbation analysis of the trajectory and calculate how pertur-
bations introduced at the apex map to the next apex. We consider
nine ball states in this analysis: all translational positions and
velocities, and ball spin. Using first-order approximations to
the system dynamics, we obtain a linear map, i.e., a linearized
Poincaré map of the perturbations over a single bounce. We tune
the eigenvalues of this mapping with the paddle curvature and
acceleration to achieve local stability for a range of apex heights
and ball parameters.

We use a video camera and a microphone to measure impact
states of the ball and paddle in order to assess juggling perfor-
mance in terms of impact location and apex height variance.
We also use these measurements to identify system parameters,
such as the ball coefficient of restitution, and to infer the process
noise introduced into the system by imperfect paddle motions
and stochastic ball impact properties.

We use the process noise measurements to refine the design
parameters and improve juggling performance. First, we set up
a linear, time-invariant system that models how the noise input
maps to the outputs: the deviations in ball impact location and
apex height. These outputs are what we want to keep small.
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Next, we use the frequency response of the linear system to-
gether with the experimental power spectral densities (PSDs) of
the process noise to calculate the output variance as a function of
the design parameters. We, then, find the design parameters that
minimize the output variance. Theoretical results predict a per-
formance improvement for the apex height and no improvement
for the impact location. This is also confirmed in experiments.
The small impact of the paddle curvature on the impact location
variance allows us to choose the curvature according to sec-
ondary criteria such as, for example, maximal achievable apex
height.

This paper is structured as follows: After an overview of
related work, we derive the nominal ball trajectory in Sec-
tion II. The perturbation analysis is presented in Section III. We
find stabilizing design parameters in Section IV. The prototype
of the Blind Juggler and experimental results are discussed in
Section V. Finally, we optimize the design parameters and dis-
cuss theoretical and experimental results in Section VI.

A. Related Work

This paper is based on previous work published in [1], where
we presented preliminary results obtained with a prototype of
the Blind Juggler. New contributions compared with previous
work include the stability analysis for nine ball states (previ-
ously a planar model) and using measured noise PSDs for the
design parameter optimization (previously assumed white pro-
cess noise).

The bouncing ball system has received attention in dynamics,
as it is a simple system that exhibits rich dynamical behavior, i.e.,
period doubling (bifurcations) leading to chaos [2], [3]. Holmes
showed that even with energy dissipation present in the form
of a coefficient of restitution, chaotic motions of the ball result
for sufficiently high excitation levels [2]. Vincent presented a
control strategy for bouncing a ball at a fixed height that exploits
chaotic behavior [4].

In robotics, juggling is considered a challenging dexterous
task. Buehler et al. were amongst the first to study robotic jug-
gling using a planar juggling robot [5]. The robot consists of a
rotating bar equipped with a billiard cushion batting a puck on
an inclined table. Using position feedback, the robot is able to
simultaneously juggle up to two pucks. It uses a feedback strat-
egy called the mirror law introduced by Buehler et al. [6], [7].
The algorithm defines the trajectory of the paddle as a mirrored
(about the desired impact height) and scaled version of the ball’s
trajectory. Consequently, this requires constant tracking of the
ball’s position. The mirror law produces paddle trajectories that
accelerate at impact, which contrasts with the results presented
in this paper, and with results obtained by Schaal and Atkeson,
who analyzed the apex height stabilizing property of a decel-
erating paddle for an open-loop bouncing ball system [8]. An
interesting aside is that Schaal et al. found that a decelerating
striking motion is a strategy intuitively used by humans when
trying to bounce a ball at a fixed height on a racket [9]. The re-
lated task of dribbling a basketball with a robot arm using force
or vision feedback was explored by Baetz et al. [10]. In legged
robotics, a hopping robot is similar to a bouncing ball system.

Ringrose presented the design of a self-stabilizing monopod
featuring a curved foot in [11], which is similar to sensorless
bouncing of a ball on a parabolic paddle.

Robotic juggling has motivated the development of advanced
control methods such as Burridge’s work on juggling an un-
constrained ball in the presence of obstacles using a cascade of
controllers [12]. This control strategy, which uses vision feed-
back, was evaluated on a direct drive robot arm, the Bühgler.
With the same arm, Rizzi et al. extended the mirror law to
unconstrained balls and achieved simultaneous juggling of two
balls [13]. Kulchenko and Todorov developed a model predictive
control strategy for juggling up to two unconstrained table tennis
balls with a single racket using a haptic robot [14]. Other work
on control involving juggling robots includes Sanfelice’s hybrid
control strategies to stabilize juggling of multiple balls [15] and
Zavala–Rı́o’s method that deals with uncertainty in the coeffi-
cient of restitution [16]. Schaal and Atkeson used a juggling
setup to develop robot learning strategies, where a robot arm it-
eratively learns to juggle a ball on a plate [17]. Sakaguchi et al.
also studied learning strategies using a planar robot arm that
juggles bean bags by throwing and catching [18].

Related to the concepts presented here is the work by Ronsse
et al., who analyzed different juggling systems [19]–[22], and
introduced the term “blind” juggling robot in [22], where they
presented a planar ball-in-wedge juggling robot that is able to
juggle purely feed forward or with feedback using measured
impact times. Their robot is even able to generate a juggling
pattern similar to the shower pattern, where the balls follow a
circular path. In [21] and [22], Ronsse et al. addressed robust-
ness of the bouncing ball system to static and dynamic errors
in the ball’s coefficient of restitution. The authors first derived
the transfer function of the errors to the postimpact velocity per-
turbations. Then, they placed the zero of the transfer function
by adjusting the paddle acceleration to either compensate for
static or dynamic errors. This is an alternative strategy to the
parameter optimization we present in this paper. Hobbelen and
Wisse presented an H2-norm inspired gait sensitivity norm that
can be used to determine disturbance rejection capabilities of
limit cycle walking robots [23]. The authors further showed that
a stability measure, such as the spectral radius of a linearized
Poincaré map, is a poor indicator of actual system performance
in the presence of stochastic disturbances. They proposed their
H2-norm inspired performance metric as a better indicator. The
gait sensitivity norm [24] can serve as a guide for design pa-
rameter selection for a walking robot, which is similar to the
variance optimization we present in this paper. Mombaur et al.
used optimization to find stabilizing design parameters for open-
loop walking robots in [25]. The authors used the spectral radius
of the linearized Poincaré map as the objective function to min-
imize in order to find design parameters resulting in a spectral
radius smaller than one, which implies stability.

The Blind Juggler is able to juggle unconstrained balls with-
out sensing. In the literature, many robots are studied that
juggle constrained balls. Examples include the single degree-
of-freedom bouncing ball setup by Vincent [4] or the planar
juggling robots analyzed by Buehler [5] and Ronsse et al.
[22]. Robots juggling unconstrained balls in three dimensions



1230 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 6, DECEMBER 2012

Fig. 2. Nominal ball trajectory. The ball starts at rest at the apex, 0. It is then
subject to free fall, 1, before it impacts with the paddle, 2−. After impact 2+ ,
the ball is again subject to free fall, 3, until it reaches again the apex, 4, which
is identical to the initial apex, 0.

Fig. 3. Definition of the coordinate system J. The sketched ball and paddle
are at nominal impact positions. The origin of J is fixed at the center of the ball
at nominal impact position, and the z-axis is aligned with gravity g.

typically feature a robotic arm; the robot used by Rizzi et al.
in [13] is one such example. These more complex robots use
cameras to continuously track the ball’s position. Schaal and
Atkeson presented an open-loop juggling robot that features
a paddle that passively keeps the ball in its center: they used a
trampoline-like racket to stabilize the horizontal degrees of free-
dom of the ball [8]. Their focus, however, was on the analysis
of the vertical stability of the ball.

II. NOMINAL BALL TRAJECTORY

We introduce the nominal ball trajectory, which is sketched in
Fig. 2. In the stability analysis, we consider the ball state S :=
(x, ẋ, ωy , y, ẏ, ωx, z, ż, ωz )

T, where T denotes the transpose. All
elements are defined in the coordinate system J shown in Fig. 3.
The positions x, y, and z describe the location of the center of
the ball. The ball velocities are ẋ, ẏ, and ż, and the ball spins
ωx, ωy , and ωz are defined by the right-hand rule. We choose
the particular grouping of the states since the spin ωy interacts
with the horizontal velocity ẋ at impact, and ωx with ẏ.

Nominally, all states except z and ż are zero. However, be-
cause we use the full nominal ball states in the perturbation
analysis in the next section, we derive them in the following.

A. Initial Apex

The ball starts at time t = 0 at the nominal apex height z(0) =
H . Its state is

S̄0 = (0, 0, 0, 0, 0, 0,H, 0, 0)T (1)

where the subscript 0 denotes the initial apex, and an overbar
denotes a nominal state.

B. Free Fall

Next, the ball is in free fall. We ignore aerodynamic drag and
obtain the differential equation

z̈(t) = −g (2)

where g = 9.81 m/s2 is the gravitational acceleration. Given
initial conditions z0 and ż0 at t = 0, its solution is

z(t) = −g

2
t2 + ż0t + z0 (3)

ż(t) = −gt + ż0 . (4)

The nominal initial conditions are ˙̄z0 = 0 and z̄0 = H . The free
fall ends at impact with the paddle, which is at z(T ) = 0 (see
Fig. 3). The nominal impact time is

T =

√
2H

g
(5)

and the nominal ball impact velocity is

˙̄z1 = −gT. (6)

The ball state at t = T is denoted with the subscript 1. The
nominal state is

S̄1 = (0, 0, 0, 0, 0, 0, 0, ˙̄z1 , 0)T . (7)

Nominally, S̄1 and the preimpact (−) ball state are identical
S̄−

2 = S̄1 . We still introduce two separate nominal states since
in the perturbation analysis, the perturbed states at the nominal
impact time and at the actual impact time differ.

C. Impact

Nominally, the vertical ball velocity is inverted at impact such
that the initial apex height is reached again. The postimpact (+)
ball state is therefore

S̄+
2 = (0, 0, 0, 0, 0, 0, 0,−˙̄z1 , 0)T . (8)

We further derive the nominal paddle state at impact. The pad-
dle state is P = (zP , żP) T, since the paddle has only a single
translational degree of freedom. The state is defined in the coor-
dinate system J, and zP captures the height of the center of the
paddle surface. At impact, the ball is in contact with the paddle
(see Fig. 3), and the nominal paddle state is therefore

P̄2 = P̄1 = (−R, ˙̄zP1)
T (9)

where R is the ball radius and the nominal paddle velocity ˙̄zP1
is obtained using Newton’s impact law

ż+ = −ez ż
− + (1 + ez )żP (10)

where ż− and ż+ are the pre- and postimpact ball velocities,
respectively. Damping losses at impact are modeled by the ver-
tical coefficient of restitution ez ∈ [0, 1]. In (10), we assume
that the ratio of the ball mass to the paddle mass is small enough
for the change in paddle impulse to be negligible (this ratio is
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≈3 × 10−4 for the Blind Juggler). For this reason, we do not
distinguish between the pre- and postimpact paddle state and
omit the superscripts (+,−). With (7) and (8) in (10), we find

˙̄zP1 = −˙̄z1
1 − ez

1 + ez
. (11)

D. Free Fall After Impact and Apex

After impact, the ball is in free fall until it reaches the nominal
apex height again. The duration of the second free fall is identical
to the first, resulting in the final apex time t = 2T . Nominally,
the state after free fall (subscript 3), the state at final apex time
(subscript 4), and the initial apex state are all identical

S̄3 = S̄4 = S̄0 . (12)

We introduce S̄3 because, in the perturbation analysis, the per-
turbed ball states after free fall and at nominal apex time are not
identical.

III. PERTURBATION ANALYSIS

In the following, we derive how perturbations, which are
added to the nominal ball apex state, map over a single bounce
to the next apex, i.e., from 0 to 4 in Fig. 2. We assume that the
perturbations are small and use first-order approximations to
the system dynamics. Experimental data presented in Section V
show that the perturbations are indeed small. Therefore, the
actual nonlinear system dynamics are captured well by a first-
order model. In the following analysis, we derive the matrices
that describe the first-order perturbation dynamics of each part of
the trajectory illustrated in Fig. 2. These matrices form the basis
for the results presented in the rest of this paper. The matrices
show that to first order, the ball perturbation dynamics in x, y,
and z are mutually decoupled; they can be used to analyze the
local stability of the ball trajectory; and finally, we use them in
the design parameter optimization.

A Mathematica notebook with the following analysis is in-
cluded in the multimedia files provided with this paper.

A. Introduce Perturbations

The perturbed ball apex state is

S0 = S̄0 + s0 (13)

where the elements of the initial perturbations are

s0 :=
(
sx0 , sẋ0 , sωy 0 , sy0 , sẏ0 , sωx 0 , sz0 , sż0 , sωz 0

)T
. (14)

B. Free Fall

We derive the mapping of the perturbations from apex, t = 0,
to the nominal impact time t = T . First, we calculate the full
state trajectory. The vertical ball trajectory is already established
with (3) and (4). Without aerodynamic drag, the horizontal and
spin dynamics are

ẍ = ÿ = 0 (15)

ω̇x = ω̇y = ω̇z = 0. (16)

Given initial conditions x0 , ẋ0 , ωy0 , y0 , ẏ0 , ωx0 , and ωz0 , the
solution is

x(t) = x0 + ẋ0t, y(t) = y0 + ẏ0t (17)

ẋ(t) = ẋ0 , ẏ(t) = ẏ0 (18)

ωy (t) = ωy , ωx(t) = ωx0 (19)

ωz (t) = ωz0 . (20)

Inspecting the previous and the vertical trajectories (3), (4), we
find that they are all linear in the initial conditions. Therefore,
the perturbed ball state at nominal impact time T is exactly

S1 = S̄1 + s1 (21)

s1 = M10s0 . (22)

The matrix M10 is the exact mapping of the initial perturbations
s0 to the perturbations s1 at nominal impact time, and is block
diagonal

M10 =

⎡
⎢⎣

N10 0 0
0 N10 0
0 0 N10

⎤
⎥⎦ , N10 =

⎡
⎢⎣

1 T 0
0 1 0
0 0 1

⎤
⎥⎦ . (23)

C. Impact

We derive the perturbation mapping over the impact in two
steps. First, we calculate the deviation from nominal impact
time, which is caused by the ball perturbations. Second, we
calculate how the perturbations map over the impact.

1) Impact Time: Due to the perturbations, the impact occurs
at the perturbed impact time T + τ . The horizontal ball states
are irrelevant for the calculation of τ , since to first order in x
and y, the parabolic paddle is flat in its center.

We first approximate the vertical ball and paddle trajectory to
first order. Using the perturbed ball state at nominal impact time
S1 (21) as new initial condition in the vertical ball trajectory
(3), we find

z̃(τ) = sz1 + ( ˙̄z1 + sż1) τ − g

2
τ 2 (24)

where sz1 and sż1 are the perturbations in ball height and vertical
velocity at nominal impact time, respectively. To first order in
the time and state perturbations, the trajectory is therefore

z(τ) = sz1 + ˙̄z1τ. (25)

Next, we derive the paddle trajectory. The paddle dynamics are

z̈P(τ) = aP (26)

where aP is the constant paddle acceleration at impact, which is
one of the two key design parameters. Using the nominal paddle
impact state P̄1 (9) as initial condition, the solution is analogous
to (24). Therefore, to first order

zP(τ) = −R + ˙̄zP1τ (27)

where R is the ball radius. The impact occurs when the ball is
in contact with the paddle

z(τ) − zP(τ) = R. (28)
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We solve for τ and obtain

τ =
sz1

˙̄zP1 − ˙̄z1
. (29)

Note that ˙̄z1 is strictly negative and ˙̄zP1 is strictly positive; there-
fore, the denominator is always �= 0 and τ is well defined. We
rewrite (29) in matrix form

τ = Mτ 1s1 (30)

Mτ 1 =
[
0 0 0 0 0 0

1
˙̄zP1 − ˙̄z1

0 0
]
. (31)

Next, we derive what the ball and paddle perturbations are at
actual impact time, T + τ . To first order, the perturbed ball and
paddle states at impact are

S−
2 = S1 + ˙̄S1τ (32)

= S̄1 + s1 + ˙̄S1Mτ 1s1 (33)

P2 = P̄1 + ˙̄P 1τ (34)

= P̄1 + ˙̄P 1Mτ 1s1 (35)

where we use the nominal time derivative of the impact states

˙̄S1 = (0, 0, 0, 0, 0, 0, ˙̄z1 ,−g, 0)T (36)

˙̄P 1 = (˙̄zP1 , aP)T (37)

and that to first order Ṡ1τ = ˙̄S1τ . Finally, the ball and paddle
preimpact (−) perturbations are

s−2 = s1 + ˙̄S1Mτ 1s1 =
(
I + ˙̄S1Mτ 1

)
s1 (38)

p2 = ˙̄P 1Mτ 1s1 (39)

where I is the identity matrix.
With the ball and paddle states defined at actual impact, we

proceed to the perturbation mapping over the impact. We intro-
duce the necessary coordinate transformations and then apply
the impact function to the transformed paddle and ball states.
Finally, we calculate, to first order, how the perturbations are
mapped to the postimpact ball state.

2) Impact Velocities: The impact affects only the ball veloc-
ities. In order to simplify the following derivation, we define a
velocity state for the ball

VS := (ẋ, ẏ, ż, ωx, ωy , ωz )
T = TVSS (40)

where TVS is the straightforward transformation matrix. Anal-
ogously for the paddle, we only consider its vertical velocity

żP = TVPP, TVP = [ 0 1 ] . (41)

3) Impact Coordinate System: The horizontal impact model,
which is introduced later, acts on velocities and spins that are
tangential and perpendicular to the impact surface. Due to the
perturbations, the ball impact is off-center. The impact surface
is defined by the parabolic paddle surface which satisfies

z =
c

2

(
Jx

2
+ Jy

2
)

=
c

2
r2 (42)

where r is the radial distance from the paddle center, and c is
the paddle curvature, which is the other key design parameter

Fig. 4. Definition of coordinate systems for impact dynamics. In order to
rotate the ball and paddle velocity vectors to the impact coordinate system C,
we first rotate about the z-axis of the coordinate system J to the intermediate
coordinate system B. The rotation angle δ is chosen such that the x-axis of B
points to the impact location of the ball. Second, we rotate about the y-axis of
B, such that the x-axis of C is tangential to the paddle surface at the ball impact
location. Due to the right-hand rule and the concave, parabolic paddle shape,
the second rotation angle is always nonpositive: γ ≤ 0.

besides the paddle acceleration aP . We derive the coordinate
transformations in order to express the velocity states VS and żP
in the impact coordinate system C (see Fig. 4). In the following,
we use preceding superscripts to denote the coordinate system
a vector or coordinate is expressed in. For example, CVS is
the ball velocity expressed in coordinate system C. All states
and coordinates without a coordinate system superscript are by
default expressed in the coordinate system J, defined in Fig. 3.

There are two rotations involved, and both are illustrated in
Fig. 4. First, we rotate the coordinate system J by δ about the Jz-
axis, such that the Bx-axis of the resulting coordinate system B
points in the direction of the impact location. The corresponding
rotation matrix is

B
J Q =

[ B
J O 0

0 B
J O

]
, B

J O =

⎡
⎢⎣

cos δ sin δ 0
− sin δ cos δ 0

0 0 1

⎤
⎥⎦ (43)

sin δ =
Jy

r
, cos δ =

Jx

r
, r2 =

(
Jx

2
+ Jy

2
)

(44)

given the impact location Jx, Jy. Note that the division by r,
which is nominally zero, is not an issue since r cancels out in
the first-order approximation later on. The rotation matrix B

J Q
transforms the ball velocity state from J to B

BVS = B
J QJVS . (45)

The paddle velocity is not affected by this rotation, as it points
in the axis of rotation

B żP = J żP . (46)

Next, we rotate the coordinate system B by γ about By, such that
Cx of the impact coordinate system is tangential to the paddle
surface at the ball impact location (see Fig. 5). The rotation
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Fig. 5. Paddle surface and rotation from B to the impact coordinate system
C, which is tangential to the paddle surface at the ball impact location.

matrix is

C
BQ =

[ C
BO 0

0 C
BO

]
, C

BO =

⎡
⎢⎣

cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ

⎤
⎥⎦ (47)

sin γ = − cr√
1 + c2r2

, cos γ =
1√

1 + c2r2
(48)

which we obtained from the derivative of the paddle shape (42)
with respect to the radius (see Fig. 5)

dz

dr
= cr. (49)

The rotation matrix C
BQ transforms the ball velocity state from

B to C
CVS = C

BQBVS . (50)

The direct coordinate transformation from J to C is
C
J Q = C

BQB
J Q. (51)

Finally, we transform the paddle velocity żP . Since the rotation
is about By, the only nonzero velocities are in Cx and Cz. We
find [

C ẋP

C żP

]
= C

J QP
J żP =

[
− sin γ

cos γ

]
J żP . (52)

4) Horizontal Impact Model: In the derivation of the nomi-
nal trajectory, we introduced Newton’s impact law for the ver-
tical velocities (10). For the horizontal velocities and spin, we
use the impact model introduced by Cross [26]. The horizon-
tal coefficient of restitution ex is a function of the relative ball
velocity and spin, which is expressed in the impact coordinate
system C as

ex : = −
C ˙̂x

+ − R Cω+
y

C ˙̂x
− − R Cω−

y

(53)

C ˙̂x = C ẋ − C ẋP (54)

where R is the ball radius, and C ẋP the horizontal velocity
of the paddle surface. The parameter ex relates the relative
horizontal velocity of the contact point of the ball over the
impact. Values of ex range from −1 to 1 and capture both
gripping and slipping ball behavior. For ex = −1, the impact
surface is frictionless, and the relative velocity of the ball contact

point does not change. For ex = 0, the ball grips the surface
without slipping, and “rolls” through the impact. Finally, ex = 1
captures a gripping, perfectly elastic ball: The relative velocity
is inverted. Positive values of ex explain the observation that a
superball (ex ≈ 0.5 [26]) returns to your hand when you throw
it onto the floor at an angle such that it bounces off the underside
of your desk.

Equation (53) does not yet fully define the postimpact ball
velocity and spin. We further use conservation of angular mo-
mentum, evaluated at the ball contact point

2
5
mR2 Cω+

y +mR C ẋ+ =
2
5
mR2 Cω−

y +mR C ẋ− (55)

with ball mass m. We combine (53)–(55), and obtain

C ẋ+ =
1
7

(
(5−2ex) C ẋ−+2 (1+ex)

(C ẋP +R Cω−
y

))
(56)

Cω+
y =

5
7R

(
(1 + ex) C ˙̂x +

(
2
5
− ex

)
R Cω−

y

)
. (57)

These equations are analogous for the states C ẏ and Cωx . How-
ever, one must consider that, by the right-hand rule, the ball spin
Cωx has the opposite contribution to the relative velocity of the
contact point and the angular momentum than Cωy . Therefore,
the appropriate update equations are obtained with the substitu-
tions C ẏ = C ẋ and Cωx = −Cωy . We further assume ey = ex .
Finally, we assume that the spin Cωz is not affected by the
impact: Cω+

z = Cω−
z .

5) Impact Function: We combine the horizontal [(56) and
(57)] and vertical (10) impact models into a single impact func-
tion, which maps the preimpact ball and paddle velocities to the
postimpact ball velocity

CV +
S = CΓS

CV −
S + CΓP

[ C ẋP

C żP

]
(58)

CΓS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − k 0 0 0 kR 0
0 1 − k 0 −kR 0 0
0 0 −ez 0 0 0
0 −α 0 1 − αR 0 0
α 0 0 0 1 − αR 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

CΓP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k 0
0 0
0 ez + 1
0 0
−α 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

α =
5 (ex + 1)

7R

k =
2 (ex + 1)

7
.

(59)

The postimpact ball state, which is expressed in the coordinate
system J, is

J S̃+
2 = IS JS−

2

+ TT
VS

C
J QT

(CΓS
C
J Q TVS

JS−
2 +CΓP

C
J QPTVP

JP2
)

(60)
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where we applied the appropriate coordinate transformations.
The term IS JS−

2 accounts for the identity mapping of the ball
position over the impact

IS =

⎡
⎢⎣

KS 0 0
0 KS 0
0 0 KS

⎤
⎥⎦ , KS =

⎡
⎢⎣

1 0 0
0 0 0
0 0 0

⎤
⎥⎦ . (61)

In the following, all states are expressed in the coordinate sys-
tem J, and we omit the superscripts. Equation (60) is nonlinear
because the rotation matrices C

J Q (51) and C
J QP (52) are non-

linear functions of the preimpact ball state S−
2 . The first-order

approximation of the perturbed ball state is

S+
2 = S̄+

2 +
∂S̃+

2

∂S−
2

∣∣∣∣∣
(S̄−

2 ,P̄2 )
s−2 +

∂S̃+
2

∂P2

∣∣∣∣∣
(S̄−

2 ,P̄2 )
p2 (62)

where the Jacobian matrices are evaluated at the respective nom-
inal states. Together with the equations for the preimpact ball
and paddle perturbations (38) and (39), we obtain the matrix
which describes how the ball perturbations at nominal impact
time s1 map, to first order, to the postimpact ball perturbations

s+
2 =

∂S+
2

∂S−
2

∣∣∣∣
(S̄−

2 ,P̄2 )
s−2 +

∂S+
2

∂P2

∣∣∣∣
(S̄−

2 ,P̄2 )
p2 (63)

=
∂S+

2

∂S−
2

∣∣∣∣
(S̄−

2 ,P̄2 )
(I + ˙̄S1Mτ 1)s1

+
∂S+

2

∂P2

∣∣∣∣
(S̄−

2 ,P̄2 )
˙̄P 1Mτ 1s1 (64)

= M21s1 (65)

where

M21 =

⎡
⎢⎣

Mx
21 0 0

0 My
21 0

0 0 Mz
21

⎤
⎥⎦ (66)

Mx
21 =

⎡
⎢⎣

1 0 0

βc(gT + ˙̄zP1) 1 − k kR

−αc(gT + ˙̄zP1) α 1 − Rα

⎤
⎥⎦ (67)

My
21 =

⎡
⎢⎣

1 0 0

βc(gT + ˙̄zP1) 1 − k −kR

αc(gT + ˙̄zP1) −α 1 − Rα

⎤
⎥⎦ (68)

Mz
21 =

⎡
⎢⎢⎢⎢⎢⎢⎣

˙̄zP1

gT + ˙̄zP1
0 0

aP (ez + 1) + ez g

gT + ˙̄zP1
−ez 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(69)

β = k − 1 − ez . (70)

D. Second Free Fall

After impact, the ball is in free fall again. We map the per-
turbations s+

2 from time T + τ to 2T + τ analogous to the first
free fall in Section III-B

s3 = M32s
+
2 , M32 = M10 . (71)

E. Final Apex

The perturbations s3 are the ball perturbations at time 2T +
τ . Therefore, we compensate for τ in order to obtain the ball
perturbations s4 at nominal apex time 2T . Analogous to (32),
we obtain

s4 = s3 − ˙̄S3τ = s3 − ˙̄S3Mτ 1s1 (72)

˙̄S3 = (0, 0, 0, 0, 0, 0, 0,−g, 0)T (73)

where we used (30) and that to first order, Ṡ3τ = ˙̄S3τ .

F. Complete Map

We combine (22), (65), (71), and (72) to obtain the matrix
M40 , which maps the initial perturbations s0 to first order over
a single impact

s4 = M40 s0 . (74)

The matrix is

M40 = M32M21M10 − ˙̄S3Mτ 1M10 . (75)

It is a block diagonal matrix with blocks corresponding to the
horizontal and vertical perturbation dynamics

M40 =

⎡
⎢⎢⎢⎣

Ax 0 0 0
0 Ay 0 0
0 0 Az 0
0 0 0 1

⎤
⎥⎥⎥⎦ (76)

Ax =

⎡
⎢⎢⎢⎢⎣

2cβgT 2

ez +1 + 1 T
(

2cβgT 2

ez +1 − k + 2
)

kRT

2cβgT
ez +1

2cβgT 2

ez +1 − k + 1 kR

− 2cgαT
ez +1 α − 2cgαT 2

ez +1 1 − Rα

⎤
⎥⎥⎥⎥⎦ (77)

Ay =

⎡
⎢⎢⎢⎢⎣

2cβgT 2

ez +1 + 1 T
(

2cβgT 2

ez +1 − k + 2
)

−kRT

2cβgT
ez +1

2cβgT 2

ez +1 − k + 1 −kR

2cgαT
ez +1 −α + 2cgαT 2

ez +1 1 − Rα

⎤
⎥⎥⎥⎥⎦ (78)

Az =

⎡
⎢⎣

aP (ez +1)2 +g(ez
2 +1)

2g

(g(ez −1)2 +(ez +1)2 aP )T

2g

(ez +1)2 (g+aP )
2gT

aP (ez +1)2 +g(ez
2 +1)

2g

⎤
⎥⎦. (79)

All the dependent parameters, which are summarized, are

T =

√
2H

g
, k =

2 (ex + 1)
7

(80)

α =
5 (ex + 1)

7R
, β = k − 1 − ez . (81)
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The independent parameters, which are summarized, are, there-
fore, the apex height H; the vertical and horizontal coefficient of
restitution ez and ex ; the ball radius R; and the two key design
parameters paddle acceleration aP and curvature c.

G. Decoupling of Horizontal and Vertical Dynamics

The block diagonal structure of M40 shows that the dynamics
of the perturbations in the state tuples (x, ẋ, ωy ) , (y, ẏ, ωx) ,
(z, ż) , and (ωz ) are all mutually independent, to first order.

IV. DESIGN PARAMETERS

With the mapping M40 , we analyze the local stability of the
ball trajectory. The goal is to find stabilizing values for the design
parameters, curvature c and paddle acceleration aP , for a range
of apex heights and ball properties. The mapping describes an
autonomous, discrete-time, linear time-invariant system

s[k + 1] = M40s[k] (82)

where s[k] are the perturbations at the kth nominal apex time,
i.e., at t = k2T . The system is stable if the spectral radius ρ
of M40 is smaller than one [27]. A spectral radius smaller than
one implies that any initial perturbations s[0] tend to zero as
k → ∞. The spectral radius of M40 is defined as

ρ (M40) := max
i

|λi (M40)| (83)

where λi is the ith eigenvalue of M40 . Since M40 is block
diagonal, its spectral radius is equal to the largest of the spectral
radii of its diagonal blocks

ρ (M40) = max {ρ (Ax) , ρ (Ay ) , ρ (Az ) , ρ (1)} . (84)

This is equivalent to stating that the dynamics of the perturbation
tuples corresponding to the diagonal blocks must be stable. For
the perturbation in vertical spin ωz , the corresponding spectral
radius is ρ(1) = 1, which is marginally stable. However, we
ignore ωz in the stability analysis since the dynamics in ωz

are, to first order, decoupled from all other states and have no
influence on juggling. Therefore, we state that the ball trajectory
is stable if ρ (Ax), ρ (Ay ), and ρ (Az ) are smaller than one.

There are two more observations that make the stability anal-
ysis more straightforward. First, we notice that Ax and Ay are
similar [28]

Ay = T−1
xy AxTxy , Txy =

⎡
⎢⎣

1 0 0
0 1 0
0 0 −1

⎤
⎥⎦ (85)

which is based on the relation between ωy and ωx in the im-
pact dynamics (see Section III-C4). The similarity implies that
Ay and Ax have the same eigenvalues; ergo, they have the
same spectral radius. To attain stability of all horizontal degrees
of freedom of the ball, it is, therefore, sufficient to show that
ρ (Ax) < 1. Intuitively, it is expected that the horizontal ball
dynamics in y are not different from the dynamics in x due to
symmetry.

Second, we find that ρ (Ax) is independent of the paddle
acceleration aP , and ρ (Az ) is independent of the curvature c.

Fig. 6. Worst-case spectral radius of Ax for ez = 0.8 and ex ∈ [−0.5, 0.5].

Therefore, we can analyze the horizontal and vertical stability
of the ball trajectory separately.

MATLAB scripts featuring the following analyses are avail-
able in the multimedia files provided with this paper.

A. Horizontal Stability

Local stability of the horizontal degrees of freedom is
achieved by choosing a paddle curvature that produces a spec-
tral radius ρ (Ax) smaller than one. Notice how the ball radius
R enters the matrix Ax (77): The only occurrences of R are
in the numerator of elements (row, column) = (1,3) and (2,3)
and in the denominator of elements (3,1) and (3,2), from which
it is straightforward to show that the eigenvalues of Ax are
independent of the ball radius.

We find that ρ (Ax) is sensitive to the apex height H . In
contrast, the impact of the vertical coefficient of restitution ez

on the following numerical stability analysis is negligible and
we fix it at ez = 0.8, which lies in the middle of the interval
ez ∈ [0.7, 0.9]. This interval corresponds to the range of balls
we expect to juggle: tennis balls to superballs [26]. We cap-
ture the variability of the spectral radius with respect to the
unknown horizontal coefficient of restitution ex with a worst-
case analysis. In Fig. 6, we show the maximum of ρ (Ax) over
the range ex ∈ [−0.5, 0.5] for various apex heights as a function
of the curvature c. The parameter range chosen for ex captures
both slipping and gripping ball impact behavior as described in
Section III-C4 and [26].

We set the design specification for the first robot prototype to
juggle at heights of up to 1.2 m. Therefore, choosing the paddle
curvature c = 0.36 (1/m) satisfies the stability requirement.

B. Vertical Stability

Local stability of the vertical degrees of freedom is achieved
with an appropriate paddle acceleration. Inspecting Az (79),
we find that the nominal impact time T (the only parameter
depending on the apex height) appears in the off-diagonal el-
ements in such a way that it cancels out when calculating the
eigenvalues of Az . Therefore, the spectral radius ρ (Az ) is inde-
pendent of the apex height. Analogous to the horizontal stability
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Fig. 7. Worst-case spectral radius of Az for ez ∈ [0.7, 0.9].

analysis, we use a worst-case analysis of ρ (Az ) over the range
ez ∈ [0.7, 0.9]. The resulting spectral radii are shown in Fig. 7.
We choose aP = −g/2 ≈ −5 m/s2 , which lies in the center of
the stable region. The determined negative acceleration is con-
sistent with results in the literature that show that a negative
acceleration is stabilizing. See, for example, the work by Schaal
and Atkeson [8] or Ronsse et al. [21], [22].

C. Aside: Alternative States for Perturbation Mapping

Perturbation maps, i.e., Poincaré maps, are often defined be-
tween impact events in the impact juggling literature, e.g., in
[19]. In contrast, we choose a fixed time interval for the mapping
M40 between the ball apex states. This choice is motivated by the
analysis of a periodic ball motion driven by an open-loop paddle
motion with a fixed period time. One can show, however, that the
two representations are equivalent, to first order. We define the
alternative ball state as Ŝ := (x, ẋ, ωy , y, ẏ, ωx, t, ż, ωz ), with t
the impact time, and the other states defined as the positions,
velocities, and spins just before impact. We may then analyze
the local stability of the nominal ball trajectory with the lin-
earized Poincaré map for the alternative perturbations ŝ, where
the perturbation in impact time is τ (29). One can show that to
first order

ŝ = Tŝss (86)

where

Tŝs =

⎡
⎢⎢⎢⎢⎣

Txy
ŝs 0 0 0

0 Txy
ŝs 0 0

0 0 Tz
ŝs 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , Txy

ŝs =

⎡
⎢⎣

1 T 0

0 1 0

0 0 1

⎤
⎥⎦ (87)

Tz
ŝs =

1
gT + ˙̄zP1

[
1 T

−g ˙̄zP1

]
. (88)

Therefore

ŝ[k + 1] = Tŝss[k + 1] = TŝsM40s[k] = TŝsM40T−1
ŝs ŝ[k].

(89)

Fig. 8. Paddle trajectory for apex height H = 0.5 m and vertical coefficient of
restitution ez = 0.8. The time interval shown is equivalent to 2T . The nominal
ball impact is indicated by the dashed line, which is flanked by the deceleration
intervals defined by τ̂ . Note that the paddle position is shifted such that the
lowest paddle position is at zero.

The inverse T−1
ŝs is well defined for T > 0. It follows that the

mapping matrices for ŝ and s are similar [28], and therefore, the
maps have the same eigenvalues. Furthermore, the block diago-
nal structure of Tŝs preserves the decoupling of the marginally
stable ωz from the other states in ŝ. Therefore, the stability of the
remaining states directly follows from the stability of Ax , Ay ,
and Az . Intuitively, if the perturbations at the ball apex vanish
as the number of impacts tends to infinity, the ball impact time
deviations τ vanish as well.

V. BLIND JUGGLER

We built a first prototype of the Blind Juggler with the de-
termined paddle curvature c = 0.36 (1/m) and paddle acceler-
ation aP = −g/2. An industrial linear motor (Linmot PS01-
37×120 [29]) actuates the solid aluminum paddle, which was
CNC-milled to the desired shape and has a diameter of 0.3 m.
We sized the motor to be able to continuously juggle balls with
a coefficient of restitution ez of at least 0.7 (tennis ball) and at
apex heights H up to at least 1.2 m.

The trajectory of the paddle is tracked by a servo controller
(B1100, also by Linmot [29]). We manually tuned the servo
controller to produce acceptable tracking performance. A high-
level state machine running on a D-Space real-time control sys-
tem [30] provides the profile parameters to the servo controller
and times the motion.

A. Paddle Trajectory

For a given coefficient of restitution ez and apex height H ,
the paddle state at nominal impact is defined by (9) and (11).
Before and after the nominal ball impact, the paddle decelerates
with aP for time τ̂ (see Fig. 8). Initially, we determined τ̂ by
assuming a static error in the ball coefficient of restitution. As
we obtained measurements of the impact times, however, we
fixed τ̂ based on impact time deviation statistics. We found that
τ̂ = 0.05 s works well.
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In practice, a larger τ̂ increases vertical robustness since larger
impact time deviations are still within the stabilizing deceler-
ation interval of the paddle trajectory. In addition, a larger τ̂
enables the robot to juggle balls with a wider range of coef-
ficients of restitution. A ball with a coefficient of restitution
different from the one the trajectory is designed for results in
a shift in mean impact time. For example, a ball with a lower
coefficient of restitution results in an earlier mean impact time
where the paddle is faster. Therefore, it is desirable to achieve a
larger range of paddle velocities during the deceleration interval.
A larger range is also achieved by a higher paddle deceleration
aP , given a fixed τ̂ . In fact, it can be shown that for a given
velocity range, a higher deceleration is preferable over a larger
τ̂ , since it leads to a smaller total stroke of the paddle. There
is a tradeoff, however, since a higher paddle deceleration leads
to wider impact time distributions (see Section VI-C), which in
turn requires a longer deceleration time τ̂ .

Finally, we choose the accelerations to speed up the paddle
before decelerating during impact, and for retracting. We use
an acceleration of 15 m/s2 to speed up the paddle and acceler-
ations of ±10 m/s2 for the retracting motion. A sample paddle
trajectory is shown in Fig. 8.

B. First Results

The first prototype of the Blind Juggler is able to continuously
juggle a variety of balls at heights between a few centimeters and
about 1.4 m. Heights above 0.6 m are only achieved with small
Nylon precision balls; see the ball discussion in Section V-C.
The Blind Juggler is robust to both horizontal and vertical per-
turbations.

1) Vertical: The apex height may be changed by slowly
adapting the paddle motion. A given nominal apex height de-
fines the paddle motion, as discussed in Section V-A. If the
nominal apex height, and, therefore, the paddle trajectory, is
changed between two impacts of the ball by a small amount,
the ball transitions to the new apex height due to the vertical
local stability. This is demonstrated in a video provided with
this paper. In the video, the nominal apex height is increased
by 0.08 m between impacts until the ball reaches the desired
height.

2) Horizontal: We tested horizontal robustness by slowly
pushing the robot back and forth in a wheeled cart. This demon-
stration is documented in a video provided with this paper.

C. Impact of Ball Properties on Performance

In experiments with different balls, we observe that the main
source of noise in the measured impact times and locations are
stochastic deviations of the impact parameters, i.e., ball round-
ness and coefficient of restitution. Solid Nylon balls, which are
manufactured to precise roundness for valve applications, intro-
duce the least amount of noise. Specifically, we use precision
balls that have a diameter of 0.012 m and that weigh 0.001 kg.
Only these precision balls allow the robot to juggle at apex
heights larger than 0.6 m. Inferior balls, such as superballs and
table tennis balls, bounce too far off-center and eventually fall
off the paddle at larger apex heights. High-quality table tennis

balls provide reasonable roundness tolerances but still fall off at
larger heights. We suspect that the seam where the half-spheres
are joined causes the balls to bounce off-center. Others sug-
gested that for larger balls, aerodynamic effects may introduce
additional horizontal ball motion. The behavior of different balls
on the robot is demonstrated in a video provided with this paper.

D. Measurements

We measured the impact time of the ball using a microphone.
The impact locations on the paddle were measured using a video
camera mounted above the paddle. Whenever the microphone
detects an impact, a small LED array lights up that is visible to
the video camera. In an offline image analysis step, we extracted
the relative positions of the ball to the paddle from all video
frames where the LED array is lit. In addition, we measured the
paddle position and velocity at impact with the motor encoder.

Given the measurement data, we estimated parts of the ball
state trajectory between two impacts. Since we had no measure-
ments of the ball spin available, we only estimated the states
x, ẋ, y, ẏ, z, and ż. We did not consider aerodynamic effects
such as drag. Therefore, given two impact times t[i] and t[i − 1],
and the corresponding impact locations x[i] and x[i − 1], the
constant ball velocity between the impacts is ẋ[i] = (x[i] −
x[i − 1])/(t[i] − t[i − 1]) (y is analogous). Similarly, we esti-
mated incoming and outgoing vertical ball velocities ż+ [i], ż−[i]
given the paddle positions and the impact time difference. From
the same data, we further estimated the ball height at nominal
apex time.

In the following, we present experimental apex height and
impact location data. All apex height data presented in this paper
were obtained with the same ball and paddle in order to obtain
comparable results. All measurements were performed with the
high precision balls discussed in Section V-C. We collected data
at three different nominal apex heights: 0.5, 0.8, and 1.05 m.
All data, MATLAB scripts for its analysis, and a measurement
video are available in the multimedia files provided with this
paper.

1) Apex Height: The estimated height deviation of the ball
at nominal apex time is equivalent to the vertical position per-
turbation sz0 (14). Means and standard deviations σz from ex-
periments at different apex heights are summarized in Table I.
Due to the high number of samples, we obtained submillimeter
95% confidence intervals for all means and variances shown in
the table. The small nonzero means are due to modeling errors,
such as imperfect trajectory tracking of the paddle, or differ-
ences between the assumed and actual ball vertical coefficient
of restitution ez . In Fig. 9, we show a histogram of the deviations
at apex height H = 1.05 m.

2) Impact Locations: The measured impact x-location
means and standard deviations σx are summarized in Table I.
The small nonzero means are due to slightly misleveled pad-
dles. We do not state the statistics for the impact locations in
y-direction, as they are practically identical (the data are avail-
able in the multimedia files). In Fig. 10, we show a histogram
of the measured impact x-locations for H = 1.05 m. A frame
of the measurement video for the same apex height with an
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TABLE I
VERTICAL AND HORIZONTAL EXPERIMENTAL DATA

Fig. 9. Apex height deviation histogram and fitted Gaussian distribution for
apex height H = 1.05 m.

Fig. 10. Impact x-coordinate histogram and fitted Gaussian distribution for
apex height H = 1.05 m.

overlay of all measured impact locations is shown in Fig. 11,
which illustrates the narrow impact location distribution.

E. Ball Parameter Identification

1) Vertical: We identify the vertical coefficient of restitution
ez from the measured data using least squares fits. We minimize

N −1∑
i=0

(νz [i](ez ))
2 (90)

Fig. 11. Accumulated impact locations on the paddle for apex height H =
1.05 m. The black crosses mark the impact locations and the white cross marks
the paddle center. As a reference for scale, the paddle diameter is 0.3 m.

Fig. 12. Vertical process noise histogram for apex height H = 1.05 m. Ap-
parently, the distribution is not Gaussian. The estimated standard deviation is
σν z = 9.09 mm/s.

over ez , where N is the number of measurements, and

νz [i](ez ) := ż+[i] + ez ż
−[i] − (1 + ez )żP [i] (91)

is the deviation of the measured vertical postimpact ball velocity
from the value that is predicted by Newton’s impact model
(10). From the measurements, we have ż+[i], ż−[i], and żP [i]
available (see Section V-D). The identified ez are 0.82, 0.81, and
0.80 for the apex heights H = 0.5, 0.8, 1.05 m, respectively.

The signal νz [i] may be interpreted as process noise that
is introduced into the system. The sources of this noise may
include imperfect velocity tracking of the paddle, anisotropic
and stochastic ball impact properties, and other modeling errors.
We show a histogram of νz [i] for the apex height H = 1.05 m
in Fig. 12. The data for the other heights are available in the
multimedia files. The measured signals for all heights have a
mean smaller than 0.01 mm/s, i.e., practically zero.

2) Horizontal: Without measuring the spin of the ball, we
cannot estimate the horizontal coefficient of restitution ex from
(53). Therefore, we use a modified horizontal impact model that
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Fig. 13. Horizontal process noise histogram and fitted Gaussian distribution
for apex height H = 1.05 m.

does not include the ball spin

C ẋ+ = ε C ẋ− + (1 − ε)C ẋP (92)

where ε is a modified horizontal coefficient of restitution, ẋP

is the horizontal paddle velocity, and the superscript C denotes
that the states are expressed in the impact coordinate system
(see Fig. 4). Similar to the vertical ez (10), ε models dissipation
due to friction during the impact. It can be obtained from the
definition of ex (53) by ε = −ex

(
Cω− = Cω+ = 0

)
. Since a

reversal of the horizontal velocity is only plausible with ball spin
present (56), ε may only assume values in the range of [0, 1].

We identify the modified horizontal coefficient of restitution
ε using a linearized impact model, which is analogous to (62) in
the perturbation analysis. The linearized impact model for the
horizontal ball velocity is

ẋ+ = −c (ε + ez ) ( ˙̄zP1 − ˙̄z1) x + εẋ− + (1 − ε) ẋP (93)

where all the states are expressed in the coordinate system J.
Nominally, the horizontal paddle velocity ẋP is zero; in practice,
however, it is nonzero due to a misleveled paddle. We combine
the term (1 − ε) ẋP into a single parameter ζ, which we identify
as well. We minimize

N −1∑
i=0

(νx [i](ε, ζ))2 (94)

over ε and ζ, where

νx [i](ε, ζ) := ẋ+[i]+c (ε+ez ) ( ˙̄zP1− ˙̄z1) x[i]−εẋ−[i]−ζ.
(95)

The measurements provide the ball speeds ẋ+[i] and ẋ−[i],
as well as the impact location x[i]. The vertical coefficient of
restitution ez is identified in a preceding step (see Section V-E1)
using the vertical data from the same experiment. The nominal
values ˙̄z1 and ˙̄zP1 are calculated using (6) and (11). Finally, we
find ε = 0.70, 0.55, and 0.41, and ζ = 6.3, 12.7, and 7.2 mm/s
for apex heights H = 0.5, 0.8, and 1.05 m, respectively.

We show a histogram of the noise signal νx [i] for the apex
height H = 1.05 m in Fig. 13. The signal is zero mean due
to the parameter ζ. We do not state the statistics for the noise

Fig. 14. PSD of horizontal process noise νx for apex height H = 1.05 m.

introduced in the y-direction, as they are practically identical.
Measurement data in y, and at other apex heights, are available
in the multimedia files provided with this paper.

F. Process Noise Characteristics

We further analyzed the PSD functions of the measured noise
signals νx and νz . We use the PSDs in the parameter optimiza-
tion presented later on. The PSD function of the signal νx [i] with
length N is the discrete Fourier transform of its autocorrelation
function

Sx
νν (Ωk ) =

N −1∑
n=0

Rx
νν [n]e−jΩk n (96)

where

Ωk =
2πk

N
, k = {0, 1, . . . , N − 1} (97)

are the discrete frequencies, and

Rx
νν [n] =

1
N

N −1∑
i=0

νx [i]νx [i − n] (98)

is the autocorrelation function. We calculate the autocorrelation
function with wrap-around, i.e., we assume that the noise signal
is periodic: νx [i + lN ] = νx [i], for any integer l. We show the
measured PSD for the apex height H = 1.05 m in Fig. 14 for
the horizontal data and in Fig. 15 for the vertical data. In the
horizontal PSD, there is a significant amount of power present
around the frequency Ω = π/2. This is most likely due to the
spin dynamics that are not captured in the modified horizontal
impact model. Evident from both vertical and horizontal PSDs
is that the noise signals are not white, since the PSDs are not
flat.

VI. DESIGN PARAMETER OPTIMIZATION

For the first prototype of the Blind Juggler, we had to choose
from a range of stabilizing design parameters. For example, the
model predicts that any curvature c ∈ (0, 0.42] keeps the ball
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Fig. 15. PSD of vertical process noise νz for apex height H = 1.05 m.

from falling off the paddle for an apex height of H = 1.2 m.
But how do we choose the specific value? Intuitively, one would
not choose a value that is close to the boundary of the stable
parameter interval shown in Fig. 6 for reasons of “robustness.”
Another idea would be to choose a curvature that results in
the smallest spectral radius as, roughly speaking, the spectral
radius is a measure for the decay rate of the system states. In
the following, we use a simple scalar dynamical system to show
that both of these intuitions may be misleading, and that the
spectral radius may not be a good performance metric for a
system. Consider the system

x[k + 1] = ax[k] +
1
a
ν[k]

w[k] = x[k] (99)

with state x, noise input ν, output w, and free system parameter
a. We call this system G(a). The goal is to keep the system
output w small in the presence of some process noise ν. The
spectral radius is equal to |a|, and therefore, we may choose any
|a| < 1 in order to obtain a stable system.

Considering only the two intuitive criteria stated earlier, we
would choose a = 0, which results in the smallest possible spec-
tral radius and is also furthest from the boundary of the stable
parameter region. However, the process noise enters the system
through the input gain 1/a, which gets very large for small a.
Therefore, even though the state decays very quickly for small
a, the noise is greatly amplified and will produce large outputs
w. A good value for a must, therefore, be a tradeoff between
input gain and state decay rate.

We analyze this tradeoff for the system (99) with the H2-
norm for discrete-time, linear time-invariant (LTI) systems [31].
Roughly speaking, the H2 system norm is the gain of a system
if the input is white noise. For example, the H2 norm of the
aforementioned system is the standard deviation of the output
w if the noise input ν is unit variance, zero-mean white noise.
The norm, which is denoted by subscript H2, is

‖G(a)‖2
H2 :=

E(w2)
E(ν2)

(100)

where E is the expected value. The norm can be calculated using
the impulse response h[k] of the system

∥∥G(a)
∥∥2

H2 =
∞∑

k=−∞
h2 [k] =

∞∑
k=1

(
1
a
ak−1

)2

(101)

=
1
a2

∞∑
k=0

a2k =
1

a2 (1 − a2)
. (102)

The tradeoff discussed previously is reflected in the structure
of the denominator of the norm. The (1 − a2) factor reflects
the influence of the spectral radius. In order to achieve a low
norm, i.e., low output variance, the factor suggests a small a.
However, there is also the contribution a2 of the input gain factor,
suggesting a large a. The minimizing a is straightforward to find.
It is a∗ =

√
2/2 ≈ 0.7. If the process noise ν was indeed white,

it would be optimally rejected by choosing a = a∗.

A. Output Variance From Input Power Spectral Density

In order to optimize juggling performance by rejecting the
process noise, we use an approach analogous to the H2 analysis
in the previous section. We learned from the measurements that
the process noise cannot be well approximated by white noise
(see Section V-F). Therefore, we use the measured noise PSDs
together with an LTI model of the juggling system in order
to predict the output variances. Finally, we optimize the system
parameters with the objective of minimizing the predicted output
variances. For example, we analyze the horizontal system, which
describes how the process noise νx maps to the impact location
on the paddle. We then find the paddle curvature that minimizes
the predicted variance of the impact locations.

The variance of the measured noise signal sequence νx [k] of
length N may be estimated by

σ2
νx =

1
N

N −1∑
k=0

ν2
x [k] (103)

since the signal has zero mean. This corresponds to the zero-lag
value of the autocorrelation function, Rx

νν [0] (98). Therefore,
we obtain an estimate of the variance from the inverse Fourier
transform of the PSD

σ2
νx = Rx

νν [0] =
1
N

N −1∑
k=0

Sx
νν (Ωk ) ejΩk ·0 . (104)

The PSD of the output wx of a single-input, single-output,
discrete-time LTI system Gx may be calculated given the PSD
Sx

νν of the noise input

Sx
ww (Ωk ) = |Gx (Ωk )|2 Sx

νν (Ωk ) (105)

where |Gx (Ωk ) | denotes the magnitude of the frequency re-
sponse of the system Gx . Using the relation in (104), we may
then estimate the variance of the output (because the system is
linear and the input is zero-mean, the output is also zero-mean).

Analogous to the stability analysis in Section IV, we optimize
the design parameters paddle curvature c and acceleration aP
independently for the horizontal and vertical degrees of freedom
as the respective systems are decoupled to first order. MATLAB
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scripts performing the following optimizations are available in
the multimedia files provided with this paper.

B. Optimized Paddle Curvature

We find the paddle curvature c that minimizes the variance of
the impact locations. First, we derive the input–output represen-
tation of the system for the horizontal directions based on the
modified impact model (92) that is governed by the modified
horizontal coefficient of restitution ε. We define the discrete-
time LTI system Gx

X[k + 1] = Aε
xX[k] + Bxνx [k]

wx [k] = CxX[k]. (106)

The state is X = (sx0 , sẋ0)
T, the horizontal perturbations at

nominal apex time. The system output wx is equivalent to the
impact location on the paddle, to first order, which is what
we want to keep small. The input νx is the horizontal process
noise. The underlying sampling time is 2T , the time between
two apexes. The matrices are straightforward to derive from a
perturbation analysis analogous to that in Section III and are

Aε
x =

⎡
⎣ 1 − 2c(ε+ez )gT 2

ez +1 T
(
− 2c(ε+ez )gT 2

ez +1 + ε + 1
)

− 2c(ε+ez )gT
ez +1 ε − 2c(ε+ez )gT 2

ez +1

⎤
⎦

Bx =

[
T

1

]
, Cx = [ 1 T ] . (107)

We use the system Gx and the relations (104), and (105) to
predict the impact location variance as a function of the paddle
curvature c. We calculate

σ2
x (c) =

1
N

N −1∑
k=0

Sx
ww (Ωk , c)

=
1
N

N −1∑
k=0

|Gx (Ωk , c)|2 Sx
νν (Ωk ). (108)

We show the magnitude of the frequency response of the system,
along with the smoothed measured PSD of the noise input signal
in Fig. 16. We use the standard deviation of the output as the
objective function to find the optimal noise-rejecting curvature
from

min
c

σx (c) (109)

for apex height H = 1.05 m and previously identified verti-
cal coefficient of restitution ez = 0.79 and modified horizontal
coefficient of restitution ε = 0.41. A plot of the standard devia-
tion σx (c) is shown in Fig. 17. There are two local minima at
curvatures of 0.18 (1/m) and 0.39 (1/m). The minima are not
very pronounced; in the interval c = [0.18, 0.39], the standard
deviation is constant and equal to 18 mm when rounded to mil-
limeters. Therefore, we predict similar impact location statistics
for all curvatures in this interval.

These results further illustrate the poor correlation between
the spectral radius and the system performance. For H =
1.05 m, we find that the spectral radius of Ax is lowest for

Fig. 16. Horizontal process noise smoothed PSD function from Fig. 14 (gray)
and magnitude of frequency responses of the system Gx for different values of
the paddle curvature.

Fig. 17. Objective function of horizontal parameter optimization.

c ∈ [0.35, 0.48] (see Fig. 6). However, Fig. 17 shows that for
curvatures above 0.4 (1/m), there is a steep increase in predicted
impact location standard deviation.

Given that the impact location standard deviations are roughly
identical for all curvatures in c = [0.18, 0.39], we may choose
a curvature based on other criteria. Namely, we observe that the
worst-case spectral radius analysis in Fig. 6 shows that lower
paddle curvatures allow juggling at higher apex heights. There
is a tradeoff between lower curvatures and required leveling
accuracy, however. The flatter the curvature, the larger the shifts
in mean impact location when the paddle is misleveled. A first-
order approximation to the lower bound Δx of the expected
shift in impact location is Δx = Δϑ/c, where Δϑ (rad) is the
leveling error angle. This bound does not include the additional
shift caused by the nonzero horizontal paddle velocities due to
Δϑ. For a curvature of c = 0.18 (1/m), a 1◦ offset would cause
the ball to shift at least 0.1 m.

With the aforementioned tradeoff in mind, we manufactured a
paddle with a curvature of c = 0.24 (1/m), for which the stability
analysis predicts stable juggling at heights of up to 2 m. We
achieved sustained juggling at this height in experiments and
show this in a video provided with this paper.
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Fig. 18. Vertical process noise smoothed PSD function from Fig. 15 (gray)
and magnitude of frequency responses of the system Gz for different values of
the paddle acceleration.

C. Optimized Paddle Acceleration

Analogous to the paddle shape optimization, we optimize the
paddle acceleration aP to minimize the standard deviation of
the apex height. We define the discrete-time LTI system Gz

Z[k + 1] = AzZ[k] + Bz νz [k]

wz [k] = CzZ[k]. (110)

The state is Z = (sz0 , sż0)
T, the vertical perturbations at nom-

inal apex time. The output corresponds to the apex height devi-
ation, to first order, which is equivalent to sz0 . The underlying
sampling time is 2T . We reuse Az (79) from the perturbation
analysis. The other system matrices are

Bz =

[
T

1

]
, Cz = [1, 0] . (111)

We predict the output variance analogously to before (108)

σ2
z (aP) =

1
N

N −1∑
k=0

Sz
ww (Ωk , aP)

=
1
N

N −1∑
k=0

|Gz (Ωk , aP)|2 Sz
νν (Ωk ). (112)

We show the magnitude of the frequency response of the system,
along with the smoothed measured PSD of the noise input signal
in Fig. 18. We obtain aP = −1.75 m/s2 from

min
aP

σz (aP) (113)

for apex height H = 1.05, and previously identified vertical
coefficient of restitution ez = 0.80. A plot of the standard
deviation σz (aP) is shown in Fig. 19. The minimized stan-
dard deviation is σz = 4.3 mm. The standard deviation for
aP = −g/2 ≈ −4.9 m/s2 is 6.8 mm; thus, the predicted im-
provement is 37% using the optimized acceleration.

In an experiment, we gathered impact data for aP =
−1.75 m/s2 using the same ball and paddle as for the measure-
ments at aP = −g/2 presented in Table I. The measured apex

Fig. 19. Objective function of vertical parameter optimization.

height standard deviation is σz = 4.0 mm with 95% confidence
interval of [3.88, 4.22]. Given the measured standard deviation
for aP = −g/2 of σz = 5.5 mm, the improvement is 27%.

The process noise PSD measured at aP = −1.75 m/s2 is,
not surprisingly, different from the spectrum measured at aP =
−g/2. A contributing factor is that the paddle velocity tracking
errors depend on the desired paddle acceleration aP . In addition,
different precision balls produce different noise spectra. With
the new measured noise power spectrum, we could repeat the
optimization, find the optimal acceleration, and obtain new mea-
surements. This could be extended into an iterative scheme with
no guarantees of convergence to an optimal paddle acceleration.
Since the measured spectra depend on a range of system param-
eters, and since the optimized vertical juggling performance is
acceptable, we did not pursue this strategy further.

Finally, even though the measured improvement of 27% is
large, it is hardly noticeable when watching the Blind Juggler
bounce a ball. A higher deceleration is, in fact, often preferable,
as it allows the robot to juggle balls with a larger range of
coefficients of restitution; see the discussion in Section V-A.
A video demonstrating the high vertical juggling performance
with a closeup of ball apexes, for both aP = −g/2 and
aP = −1.75 m/s2 , is available in the multimedia files provided
with this paper.

VII. CONCLUSION

The Blind Juggler has demonstrated that high-performance
robotic juggling of unconstrained balls is possible without feed-
back. We have analytically showed local stability of the ball
trajectory and verified the results in experiments that confirmed
the robot’s ability to continuously juggle balls at heights of up
to 2 m. We would like to highlight how signal processing con-
cepts, such as predicting system performance from measured
noise PSDs, may be used to optimize hardware design. The
procedure of building a first prototype, obtaining noise mea-
surements, and subsequent design optimization may be useful
for other mechanical robot designs.

The results obtained with the Blind Juggler allow us to de-
sign more advanced juggling robots, for example, the Pendulum
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Juggler, which is able to juggle unconstrained balls in a side-
to-side pattern without feedback [32]. We further developed a
paddle that features four concave, parabolic areas which enabled
the Blind Juggler to simultaneously juggle up to four balls. We
used this paddle to study the rich dynamics of the bouncing ball
system, such as coexisting stable periodic orbits and chaotic sys-
tem behavior. Additional information, including videos, may be
found on the project website: www.blindjuggler.org.
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